Suppr超能文献

胸部 X 光片中肺结节的检测:使用纯合成数据集进行有效网络训练的新代价函数。

Detection of pulmonary nodules in chest radiographs: novel cost function for effective network training with purely synthesized datasets.

机构信息

Department of Radiology, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2024 Oct;19(10):1991-2000. doi: 10.1007/s11548-024-03227-7. Epub 2024 Jul 13.

Abstract

PURPOSE

Many large radiographic datasets of lung nodules are available, but the small and hard-to-detect nodules are rarely validated by computed tomography. Such difficult nodules are crucial for training nodule detection methods. This lack of difficult nodules for training can be addressed by artificial nodule synthesis algorithms, which can create artificially embedded nodules. This study aimed to develop and evaluate a novel cost function for training networks to detect such lesions. Embedding artificial lesions in healthy medical images is effective when positive cases are insufficient for network training. Although this approach provides both positive (lesion-embedded) images and the corresponding negative (lesion-free) images, no known methods effectively use these pairs for training. This paper presents a novel cost function for segmentation-based detection networks when positive-negative pairs are available.

METHODS

Based on the classic U-Net, new terms were added to the original Dice loss for reducing false positives and the contrastive learning of diseased regions in the image pairs. The experimental network was trained and evaluated, respectively, on 131,072 fully synthesized pairs of images simulating lung cancer and real chest X-ray images from the Japanese Society of Radiological Technology dataset.

RESULTS

The proposed method outperformed RetinaNet and a single-shot multibox detector. The sensitivities were 0.688 and 0.507 when the number of false positives per image was 0.2, respectively, with and without fine-tuning under the leave-one-case-out setting.

CONCLUSION

To our knowledge, this is the first study in which a method for detecting pulmonary nodules in chest X-ray images was evaluated on a real clinical dataset after being trained on fully synthesized images. The synthesized dataset is available at https://zenodo.org/records/10648433 .

摘要

目的

有许多大型的肺部结节放射影像数据集,但计算机断层扫描(CT)很少验证小而难以检测的结节。这些难以检测的结节对于训练结节检测方法至关重要。为了解决训练中缺乏这些困难结节的问题,可以使用人工合成结节算法,该算法可以创建人工嵌入的结节。本研究旨在开发和评估一种新的成本函数,用于训练网络来检测此类病变。当阳性病例不足以进行网络训练时,在健康的医学图像中嵌入人工病变是有效的。尽管这种方法既提供了阳性(病变嵌入)图像,也提供了相应的阴性(无病变)图像,但目前还没有有效的方法可以有效地利用这些图像对进行训练。本文提出了一种新的基于分割的检测网络成本函数,用于在存在正负样本对的情况下进行训练。

方法

在经典的 U-Net 基础上,在原始 Dice 损失中添加了新的项,用于减少假阳性和图像对中病变区域的对比学习。分别在 131072 对模拟肺癌的全合成图像对和来自日本放射技术学会数据集的真实胸部 X 射线图像上对实验网络进行了训练和评估。

结果

与 RetinaNet 和单发多盒检测器相比,该方法具有更好的性能。在每个图像有 0.2 个假阳性的情况下,在离开一个病例的设置下,不进行微调时的灵敏度分别为 0.688 和 0.507,进行微调时的灵敏度分别为 0.751 和 0.564。

结论

据我们所知,这是第一个在完全合成的图像上进行训练后,在真实的临床数据集上评估胸部 X 射线图像中肺结节检测方法的研究。该合成数据集可在 https://zenodo.org/records/10648433 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2190/11442563/321648046fb5/11548_2024_3227_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验