Suppr超能文献

基于精神科病历中的“现病史”用深度神经网络预测精神状况。

Predicting mental conditions based on "history of present illness" in psychiatric notes with deep neural networks.

机构信息

Department of Computer Science, University of Kentucky, 329 Rose Street, Lexington, KY 40506, USA.

Department of Computer Science, University of Kentucky, 329 Rose Street, Lexington, KY 40506, USA; Division of Biomedical Informatics, Department of Internal Medicine, University Kentucky, 725 Rose Street, Lexington, KY 40536, USA.

出版信息

J Biomed Inform. 2017 Nov;75S:S138-S148. doi: 10.1016/j.jbi.2017.06.010. Epub 2017 Jun 10.

Abstract

BACKGROUND

Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task.

OBJECTIVE

We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient's history of present illness typically occurring in the beginning of a psychiatric initial evaluation note.

MATERIALS AND METHODS

We clean and process the 1000 records made available through the N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples for which there is a narrative for history of present illness as well as Yes/No responses with regards to presence of specific mental conditions. We propose two independent deep neural network models: one based on convolutional neural networks (CNN) and another based on recurrent neural networks with hierarchical attention (ReHAN), the latter of which allows for interpretation of model decisions. We conduct experiments to compare these methods to each other and to baselines based on linear models and named entity recognition (NER).

RESULTS

Our CNN model with optimized thresholding of output probability estimates achieves best overall mean micro-F score of 63.144% for 11 common mental conditions with statistically significant gains (p<0.05) over all other models. The ReHAN model with interpretable attention mechanism scored 61.904% mean micro-F1 score. Both models' improvements over baseline models (support vector machines and NER) are statistically significant. The ReHAN model additionally aids in interpretation of the results by surfacing important words and sentences that lead to a particular prediction for each instance.

CONCLUSIONS

Although the history of present illness is a short text segment averaging 300 words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder, and attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform baseline approaches and complement each other when evaluating on a per-label basis.

摘要

背景

由于相关叙述的敏感性,将自然语言处理应用于心理健康记录并不常见。CEGS N-GRID 2016 年临床自然语言处理(NLP)共享任务改变了这种情况,为参与者提供了第一组神经精神科记录。本研究总结了我们在作为该共享任务第三轨道的一部分提出该数据集的新数据用例方面的努力和结果。

目的

我们探索了基于患者病史的简短文本描述预测患者一系列常见精神状况的可行性和有效性,该描述通常出现在精神科初始评估记录的开头。

材料和方法

我们清理并处理通过 N-GRID 临床 NLP 任务提供的 1000 条记录,将其转换为键值字典,并构建一个数据集,其中包含 986 个示例,这些示例都有病史的叙述,以及关于特定精神状况存在的是/否回答。我们提出了两个独立的深度神经网络模型:一个基于卷积神经网络(CNN),另一个基于具有层次注意的递归神经网络(ReHAN),后者允许解释模型决策。我们进行实验比较这些方法之间的差异,以及基于线性模型和命名实体识别(NER)的基线。

结果

我们的 CNN 模型通过优化输出概率估计的阈值,在 11 种常见精神状况下实现了最佳的总体平均微 F 分数 63.144%,与所有其他模型相比具有统计学显著增益(p<0.05)。具有可解释注意力机制的 ReHAN 模型得分为 61.904%的平均微 F1 分数。与基线模型(支持向量机和 NER)相比,这两种模型的改进都具有统计学意义。ReHAN 模型还通过显示导致每个实例特定预测的重要单词和句子,帮助解释结果。

结论

尽管病史是一个平均 300 个单词的短文本片段,但它是焦虑、抑郁、惊恐障碍和注意力缺陷多动障碍等少数情况的良好预测指标。提出的 CNN 和 RNN 模型在评估每个标签时优于基线方法,并相互补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7437/5705423/53239ba7556c/nihms891480f1.jpg

相似文献

6
Temporal indexing of medical entity in Chinese clinical notes.中文临床记录中医疗实体的时间索引。
BMC Med Inform Decis Mak. 2019 Jan 31;19(Suppl 1):17. doi: 10.1186/s12911-019-0735-x.

引用本文的文献

本文引用的文献

7
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验