Suppr超能文献

通过功能约束结构图变分自编码器实现结构与功能连接组的统一嵌入

Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder.

作者信息

Amodeo Carlo, Fortel Igor, Ajilore Olusola, Zhan Liang, Leow Alex, Tulabandhula Theja

机构信息

Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.

Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;13431:406-415. doi: 10.1007/978-3-031-16431-6_39. Epub 2022 Sep 15.

Abstract

Graph theoretical analyses have become standard tools in modeling functional and anatomical connectivity in the brain. With the advent of connectomics, the primary graphs or networks of interest are structural connectome (derived from DTI tractography) and functional connectome (derived from resting-state fMRI). However, most published connectome studies have focused on either structural or functional connectome, yet complementary information between them, when available in the same dataset, can be jointly leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE) capable of incorporating information from both functional and structural connectome in an unsupervised fashion. This leads to a joint low-dimensional embedding that establishes a unified spatial coordinate system for comparing across different subjects. We evaluate our approach using the publicly available OASIS-3 Alzheimer's disease (AD) dataset and show that a variational formulation is necessary to optimally encode functional brain dynamics. Further, the proposed joint embedding approach can more accurately distinguish different patient sub-populations than approaches that do not use complementary connectome information.

摘要

图论分析已成为建模大脑功能和解剖连接性的标准工具。随着连接组学的出现,主要关注的图或网络是结构连接组(源自扩散张量成像纤维束追踪)和功能连接组(源自静息态功能磁共振成像)。然而,大多数已发表的连接组研究都只关注结构连接组或功能连接组,然而,当同一数据集中同时存在这两者时,它们之间的互补信息可以共同利用,以增进我们对大脑的理解。为此,我们提出了一种功能约束结构图变分自编码器(FCS-GVAE),它能够以无监督的方式整合功能连接组和结构连接组的信息。这会产生一个联合低维嵌入,从而建立一个统一的空间坐标系,以便在不同受试者之间进行比较。我们使用公开可用的OASIS-3阿尔茨海默病(AD)数据集评估了我们的方法,并表明变分公式对于最佳编码大脑功能动态是必要的。此外,与不使用互补连接组信息的方法相比,所提出的联合嵌入方法能够更准确地区分不同的患者亚群。

相似文献

4
Representation learning of resting state fMRI with variational autoencoder.基于变分自编码器的静息态 fMRI 表示学习。
Neuroimage. 2021 Nov 1;241:118423. doi: 10.1016/j.neuroimage.2021.118423. Epub 2021 Jul 23.
10
Structural Basis of Large-Scale Functional Connectivity in the Mouse.小鼠大规模功能连接的结构基础
J Neurosci. 2017 Aug 23;37(34):8092-8101. doi: 10.1523/JNEUROSCI.0438-17.2017. Epub 2017 Jul 17.

本文引用的文献

1
A Comprehensive Survey on Graph Neural Networks.图神经网络综述。
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.
2
Structure and function of complex brain networks.复杂脑网络的结构与功能
Dialogues Clin Neurosci. 2013 Sep;15(3):247-62. doi: 10.31887/DCNS.2013.15.3/osporns.
3
Exploring the brain network: a review on resting-state fMRI functional connectivity.探索大脑网络:静息态 fMRI 功能连接的综述。
Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34. doi: 10.1016/j.euroneuro.2010.03.008. Epub 2010 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验