Suppr超能文献

基于量子点的可重构量子光子电路。

Reconfigurable quantum photonic circuits based on quantum dots.

作者信息

McCaw Adam, Ewaniuk Jacob, Shastri Bhavin J, Rotenberg Nir

机构信息

Centre for Nanophotonics, Department of Physics, Engineering Physics & Astronomy, Queen's University, 64 Bader Lane, K7L 3N6, Kingston, Ontario, Canada.

Vector Institute, M5G 1M1, Toronto, Ontario, Canada.

出版信息

Nanophotonics. 2024 May 9;13(16):2951-2959. doi: 10.1515/nanoph-2024-0044. eCollection 2024 Jul.

Abstract

Quantum photonic integrated circuits, composed of linear-optical elements, offer an efficient way for encoding and processing quantum information on-chip. At their core, these circuits rely on reconfigurable phase shifters, typically constructed from classical components such as thermo- or electro-optical materials, while quantum solid-state emitters such as quantum dots are limited to acting as single-photon sources. Here, we demonstrate the potential of quantum dots as reconfigurable phase shifters. We use numerical models based on established literature parameters to show that circuits utilizing these emitters enable high-fidelity operation and are scalable. Despite the inherent imperfections associated with quantum dots, such as imperfect coupling, dephasing, or spectral diffusion, we show that circuits based on these emitters may be optimized such that these do not significantly impact the unitary infidelity. Specifically, they do not increase the infidelity by more than 0.001 in circuits with up to 10 modes, compared to those affected only by standard nanophotonic losses and routing errors. For example, we achieve fidelities of 0.9998 in quantum-dot-based circuits enacting controlled-phase and - not gates without any redundancies. These findings demonstrate the feasibility of quantum emitter-driven quantum information processing and pave the way for cryogenically-compatible, fast, and low-loss reconfigurable quantum photonic circuits.

摘要

由线性光学元件组成的量子光子集成电路为在芯片上编码和处理量子信息提供了一种有效方法。这些电路的核心依赖于可重构相移器,通常由热光或电光材料等经典组件构成,而诸如量子点之类的量子固态发射器则仅限于用作单光子源。在此,我们展示了量子点作为可重构相移器的潜力。我们使用基于已发表文献参数的数值模型表明,利用这些发射器的电路能够实现高保真操作且具有可扩展性。尽管量子点存在诸如耦合不完善、退相或光谱扩散等固有缺陷,但我们表明基于这些发射器的电路可以进行优化,使得这些缺陷不会对酉保真度产生显著影响。具体而言,与仅受标准纳米光子损耗和路由误差影响的电路相比,在具有多达10个模式的电路中,它们不会使保真度增加超过0.001。例如,在执行受控相位门和非门且无任何冗余的基于量子点的电路中,我们实现了0.9998的保真度。这些发现证明了量子发射器驱动的量子信息处理的可行性,并为低温兼容、快速且低损耗的可重构量子光子电路铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0867/11501736/8e29d616dad4/j_nanoph-2024-0044_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验