Suppr超能文献

具有片上单光子探测器的可重构光子学。

Reconfigurable photonics with on-chip single-photon detectors.

作者信息

Gyger Samuel, Zichi Julien, Schweickert Lucas, Elshaari Ali W, Steinhauer Stephan, Covre da Silva Saimon F, Rastelli Armando, Zwiller Val, Jöns Klaus D, Errando-Herranz Carlos

机构信息

Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.

Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.

出版信息

Nat Commun. 2021 Mar 3;12(1):1408. doi: 10.1038/s41467-021-21624-3.

Abstract

Integrated quantum photonics offers a promising path to scale up quantum optics experiments by miniaturizing and stabilizing complex laboratory setups. Central elements of quantum integrated photonics are quantum emitters, memories, detectors, and reconfigurable photonic circuits. In particular, integrated detectors not only offer optical readout but, when interfaced with reconfigurable circuits, allow feedback and adaptive control, crucial for deterministic quantum teleportation, training of neural networks, and stabilization of complex circuits. However, the heat generated by thermally reconfigurable photonics is incompatible with heat-sensitive superconducting single-photon detectors, and thus their on-chip co-integration remains elusive. Here we show low-power microelectromechanical reconfiguration of integrated photonic circuits interfaced with superconducting single-photon detectors on the same chip. We demonstrate three key functionalities for photonic quantum technologies: 28 dB high-extinction routing of classical and quantum light, 90 dB high-dynamic range single-photon detection, and stabilization of optical excitation over 12 dB power variation. Our platform enables heat-load free reconfigurable linear optics and adaptive control, critical for quantum state preparation and quantum logic in large-scale quantum photonics applications.

摘要

集成量子光子学通过将复杂的实验室装置小型化并实现稳定化,为扩大量子光学实验规模提供了一条很有前景的途径。量子集成光子学的核心元件包括量子发射器、存储器、探测器和可重构光子电路。特别是,集成探测器不仅能提供光学读出功能,而且当与可重构电路连接时,还能实现反馈和自适应控制,这对于确定性量子隐形传态、神经网络训练以及复杂电路的稳定至关重要。然而,热可重构光子学产生的热量与对热敏感的超导单光子探测器不兼容,因此它们在芯片上的共集成仍然难以实现。在此,我们展示了在同一芯片上与超导单光子探测器相连的集成光子电路的低功耗微机电重构。我们演示了光子量子技术的三个关键功能:经典光和量子光的28 dB高消光比路由、90 dB高动态范围单光子探测以及在12 dB功率变化范围内的光激发稳定。我们的平台实现了无热负载的可重构线性光学和自适应控制,这对于大规模量子光子学应用中的量子态制备和量子逻辑至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6113/7930283/989e1e51cf55/41467_2021_21624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验