Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India.
World J Microbiol Biotechnol. 2024 Jul 16;40(9):269. doi: 10.1007/s11274-024-04072-1.
Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.
金纳米粒子(AuNPs)由于其独特的物理、化学和光学特性,在生物传感器的发展中引起了广泛关注。当 AuNPs 被纳入生物传感器中时,它们具有几个优势,包括高的表面积与体积比、出色的生物相容性、易于功能化和可调谐的光学性质。这些特性使它们成为检测各种生物分子(包括蛋白质、核酸以及细菌和病毒生物标志物)的理想选择。传统的检测细菌和病毒的方法,如 RT-PCR 和 ELISA,通常存在复杂性、时间消耗和劳动强度大等问题。因此,研究人员不断探索新的设备来解决这些限制,有效地检测各种传染性致病微生物。鉴于这些挑战,纳米技术在改进生物传感器的架构和性能方面发挥了重要作用。通过利用纳米材料的进展和生物传感器制造策略,可以提高生物传感器的灵敏度和特异性,从而更精确地检测致病细菌和病毒。本综述探讨了 AuNPs 在检测各种生物分子(包括蛋白质、核酸以及细菌和病毒生物标志物)方面的多功能性。此外,还评估了基于 AuNPs 的生物传感器在检测病原体方面的最新进展,利用了光学生物传感器、侧向流动免疫分析、比色免疫传感器、电化学生物传感器和荧光纳米生物传感器等技术。此外,该研究还讨论了该领域现有的挑战,并提出了未来的方向,以改进基于 AuNPs 的生物传感器,重点是提高其灵敏度、选择性以及在临床和诊断应用中的实用性。
World J Microbiol Biotechnol. 2024-7-16
J Biomed Nanotechnol. 2014-10
Sensors (Basel). 2020-12-4
J Mater Chem B. 2024-1-31
World J Microbiol Biotechnol. 2025-7-1
World J Microbiol Biotechnol. 2025-6-25
Biosensors (Basel). 2025-1-17
Nat Rev Bioeng. 2023
Biosensors (Basel). 2023-3-22
Biosensors (Basel). 2023-1-24
Biosensors (Basel). 2022-12-26
J Pharm Biomed Anal. 2023-1-20