Ahmad Rana Bilal, Anwar Abdul Waheed, Ali Anwar, Fatima Tehreem, Moin Muhammad, Nazir Amna, Batool Asma, Shabir Umer
Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan.
J Mol Model. 2024 Jul 17;30(8):270. doi: 10.1007/s00894-024-06040-w.
In the renewable industry, pressure-dependent CsPbBr perovskite has a lot of potential due to its exceptional properties. Present work revealed the mechanical stability of CsPbBr between 0 to 50 GPa. The bandgap of unstressed CsPbBr is 2.90 eV, indicating a direct bandgap. Band gap values decrease by increasing external pressure. CsPbBr structure showed a direct band gap from 0 to 35 GPa and in-direct from 40 to 50 GPa. The unit cell volume and lattice constants are substantially decreased. Mechanical parameters, i.e., Young's modulus, bulk modulus, anisotropy factor, shear modulus, and poison's ratio are obtained. Under ambient conditions, the mechanical properties of CsPbBr showed ductile behavior and with induced pressure, their ductility has significantly improved. By applying stresses ranging from 0 to 50 GPa, the considerable fluctuation in values of dielectric function (imaginary and real), absorption, reflectivity, loss function, refractive index (imaginary and real), and conductivity (imaginary and real), was also identified. When pressure rises, the optical parameters increase and drag in the direction of high energies. Response functions are used to predict the density of states and the phonon lattice dispersion to study the phonon properties. By using the quasi-harmonic Debye model, the thermal effect on the free energy, entropy, enthalpy, and heat capacity were predicted and compared. These results would be useful for theoretical research and indicate how external pressure significantly affects the physical characteristics of CsPbBr perovskites, which may open up new possibilities for use in optoelectronic, photonic, and solar cell applications.
The structural, electrical, mechanical, optical, and thermal properties of cesium lead bromide (CsPbBr) are investigated by applying external pressure from 0 to 50 GPa, using generalized gradient approximations (GGA) and Perdew-Burke-Ernzerhof (PBE) with CASTEP code built-in material studio by density functional theory (DFT).
在可再生能源行业中,压力依赖型CsPbBr钙钛矿因其优异的性能而具有很大潜力。目前的研究揭示了CsPbBr在0至50吉帕压力下的机械稳定性。无应力CsPbBr的带隙为2.90电子伏特,表明是直接带隙。带隙值随外部压力增加而减小。CsPbBr结构在0至35吉帕时显示直接带隙,在40至50吉帕时显示间接带隙。晶胞体积和晶格常数大幅减小。获得了力学参数,即杨氏模量、体模量、各向异性因子、剪切模量和泊松比。在环境条件下,CsPbBr的力学性能表现出韧性行为,随着压力的施加,其韧性显著提高。通过施加0至50吉帕的应力,还确定了介电函数(虚部和实部)、吸收、反射率、损耗函数、折射率(虚部和实部)以及电导率(虚部和实部)值的显著波动。当压力升高时,光学参数增加并向高能方向移动。响应函数用于预测态密度和声子晶格色散,以研究声子特性。通过使用准谐波德拜模型,预测并比较了自由能、熵、焓和热容量的热效应。这些结果将有助于理论研究,并表明外部压力如何显著影响CsPbBr钙钛矿的物理特性,这可能为光电子、光子和太阳能电池应用开辟新的可能性。
使用广义梯度近似(GGA)和佩德韦-伯克-恩泽霍夫(PBE),通过密度泛函理论(DFT),利用内置在材料工作室中的CASTEP代码,对溴化铯铅(CsPbBr)施加0至50吉帕的外部压力,研究其结构、电学、力学、光学和热学性质。