Meng Lingyao, Vu Tuan V, Criscenti Louise J, Ho Tuan A, Qin Yang, Fan Hongyou
Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Chem Rev. 2023 Aug 23;123(16):10206-10257. doi: 10.1021/acs.chemrev.3c00169. Epub 2023 Jul 31.
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
利用压缩机械力,如压力,来诱导纳米颗粒(NPs)中的晶体学相变和介观结构变化,同时调节材料性能,是发现新的相行为、创造新型纳米结构以及研究在传统条件下难以实现的新兴特性的独特方法。近几十年来,通过原位散射和/或光谱技术,对大量化学成分、尺寸、形状、表面配体和自组装介观结构的纳米颗粒在压力下进行了研究。结果,压力-结构-性能关系的基础知识得到了显著改善,从而更好地理解了纳米材料合成的设计准则。在本综述中,我们讨论了主要在过去大约四年中对半导体纳米颗粒、金属和金属氧化物纳米颗粒以及钙钛矿纳米颗粒进行的纳米颗粒高压研究的实验进展。我们关注纳米颗粒在原子和介观尺度上的压力诱导行为、压缩时无机纳米颗粒的性能变化以及压力下钙钛矿纳米颗粒的结构和性能转变。我们还深入讨论了分子建模的进展,包括配体行为模拟、相变硫族化物、层状过渡金属二硫属化物、氮化硼以及无机和有机-无机杂化钙钛矿纳米颗粒。这些模型现在既为实验观察提供了机理解释,也为未来的实验设计提供了预测指导。我们最后总结并阐述了对纳米材料相变、耦合、生长以及纳米电子和光子特性探索未来方向的见解。