Suppr超能文献

作为尺寸选择性纳米孔的柔性DNA折纸纳米致动器。

Compliant DNA Origami Nanoactuators as Size-Selective Nanopores.

作者信息

Yu Ze, Baptist Anna V, Reinhardt Susanne C M, Bertosin Eva, Dekker Cees, Jungmann Ralf, Heuer-Jungemann Amelie, Caneva Sabina

机构信息

Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.

Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany.

出版信息

Adv Mater. 2024 Sep;36(39):e2405104. doi: 10.1002/adma.202405104. Epub 2024 Jul 16.

Abstract

Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.

摘要

生物纳米孔对细胞内生物分子跨脂质膜的进出起着至关重要的控制作用。它们在生物物理学和生物技术领域有着广泛的应用,其典型的狭窄、固定直径能够实现离子和小分子的选择性运输,以及用于测序应用的DNA和肽的运输。然而,由于其通道尺寸较小,它们阻碍了大分子(如治疗药物)的通过。在此,利用DNA折纸纳米技术、受机器启发的设计和合成生物学的独特综合特性,提出了一种结构可重构的DNA折纸机械孔(MP),其内腔大小可通过分子触发进行调节。通过3D-DNA-PAINT超分辨率成像和染料流入测定法,在通过反相乳液cDICE技术将大MPs重构到脂质体膜中后,证实了MPs在3种稳定状态之间的可控切换。跨膜运输的共聚焦成像显示了具有可调阈值的尺寸选择性行为。重要的是,构象变化是完全可逆的,证明了克服周围脂质分子压力的强大机械切换。这些MPs推动了纳米孔技术的发展,提供了可按需调节的功能性纳米结构,从而影响了药物递送、生物分子分选和传感以及自下而上的合成生物学等多个领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验