Suppr超能文献

DNA 折纸术:可指导和解读细胞行为的折叠 DNA 纳米器件。

DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior.

机构信息

Department of Anatomy, Tissue Engineering Research Group and Advanced Materials and Bioengineering Research Center, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland.

Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Adv Mater. 2016 Jul;28(27):5509-24. doi: 10.1002/adma.201504733. Epub 2016 Feb 3.

Abstract

DNA origami is a DNA-based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2D and 3D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargoes including drugs, antibodies, nucleic acid sequences, small molecules, and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing, and synthetic nanopore formation. Here, the advances in the DNA-origami field since its inception several years ago are reviewed with a focus on how these DNA-nanodevices can be designed to interact with cells to direct or probe their behavior.

摘要

DNA 折纸术是一种基于 DNA 的纳米技术,它利用短的互补寡核苷酸的编程组合将一条大的单链 DNA 折叠成精确的 2D 和 3D 形状。这种固有生物相容性材料的纳米级形状控制与空间寻址折纸结构的能力相结合,可以结合各种货物,包括药物、抗体、核酸序列、小分子和无机颗粒。这种可编程的灵活性使精确纳米器件的制造成为可能,这些纳米器件已经在生物医药应用方面显示出了巨大的潜力,如药物输送、生物传感和合成纳米孔形成。本文回顾了几年来 DNA 折纸术领域的进展,重点介绍了如何设计这些 DNA 纳米器件与细胞相互作用,以指导或探测其行为。

相似文献

1
DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior.
Adv Mater. 2016 Jul;28(27):5509-24. doi: 10.1002/adma.201504733. Epub 2016 Feb 3.
2
Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
Molecules. 2020 Jul 26;25(15):3386. doi: 10.3390/molecules25153386.
3
Organizing DNA origami tiles into larger structures using preformed scaffold frames.
Nano Lett. 2011 Jul 13;11(7):2997-3002. doi: 10.1021/nl201603a. Epub 2011 Jun 23.
4
Nanopores formed by DNA origami: a review.
FEBS Lett. 2014 Oct 1;588(19):3564-70. doi: 10.1016/j.febslet.2014.06.013. Epub 2014 Jun 10.
5
Nanomechanical molecular devices made of DNA origami.
Acc Chem Res. 2014 Jun 17;47(6):1742-9. doi: 10.1021/ar400328v. Epub 2014 Apr 29.
6
DNA Origami in the Quest for Membrane Piercing.
Chem Asian J. 2022 Oct 4;17(19):e202200591. doi: 10.1002/asia.202200591. Epub 2022 Aug 24.
7
DNA nanotechnology assisted nanopore-based analysis.
Nucleic Acids Res. 2020 Apr 6;48(6):2791-2806. doi: 10.1093/nar/gkaa095.
8
Nanopore fingerprinting of supramolecular DNA nanostructures.
Biophys J. 2022 Dec 20;121(24):4882-4891. doi: 10.1016/j.bpj.2022.08.020. Epub 2022 Aug 18.
9
Advancing Biophysics Using DNA Origami.
Annu Rev Biophys. 2021 May 6;50:469-492. doi: 10.1146/annurev-biophys-110520-125739. Epub 2021 Mar 1.
10
DNA origami frame filled with two types of single-stranded tiles.
Nanoscale. 2022 Apr 7;14(14):5340-5346. doi: 10.1039/d1nr05583f.

引用本文的文献

1
Plugging synthetic DNA nanoparticles into the central dogma of life.
Chem Commun (Camb). 2024 Dec 19;61(2):220-231. doi: 10.1039/d4cc04648j.
2
DNA Origami-Constructed Nanotapes for Sunitinib Adsorption and Inhibition of Renal Clear Carcinoma Cells.
ACS Omega. 2024 Jul 29;9(31):33765-33772. doi: 10.1021/acsomega.4c03091. eCollection 2024 Aug 6.
3
In vitro transcription of self-assembling DNA nanoparticles.
Sci Rep. 2023 Aug 10;13(1):12961. doi: 10.1038/s41598-023-39777-0.
4
Synthetic Cell Armor Made of DNA Origami.
Nano Lett. 2023 Aug 9;23(15):7076-7085. doi: 10.1021/acs.nanolett.3c01878. Epub 2023 Jul 18.
6
DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors.
Cancers (Basel). 2023 Apr 5;15(7):2151. doi: 10.3390/cancers15072151.
7
DNA Origami Nanostructures Elicit Dose-Dependent Immunogenicity and Are Nontoxic up to High Doses In Vivo.
Small. 2022 Jul;18(26):e2108063. doi: 10.1002/smll.202108063. Epub 2022 May 28.
8
Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration.
Burns Trauma. 2022 Mar 10;10:tkac006. doi: 10.1093/burnst/tkac006. eCollection 2022.
9
Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation.
Adv Drug Deliv Rev. 2022 Feb;181:114081. doi: 10.1016/j.addr.2021.114081. Epub 2021 Dec 13.
10
Accessing and Assessing the Cell-Surface Glycocalyx Using DNA Origami.
Nano Lett. 2021 Jun 9;21(11):4765-4773. doi: 10.1021/acs.nanolett.1c01236. Epub 2021 May 24.

本文引用的文献

1
Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model.
Small. 2016 Jan 20;12(3):308-20. doi: 10.1002/smll.201502118. Epub 2015 Nov 19.
2
Designing DNA nanodevices for compatibility with the immune system of higher organisms.
Nat Nanotechnol. 2015 Sep;10(9):741-7. doi: 10.1038/nnano.2015.180.
3
Purification of functionalized DNA origami nanostructures.
ACS Nano. 2015 May 26;9(5):4968-75. doi: 10.1021/nn507035g. Epub 2015 May 12.
4
DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.
Nano Lett. 2015 May 13;15(5):3134-8. doi: 10.1021/acs.nanolett.5b00189. Epub 2015 Apr 8.
5
Programmable motion of DNA origami mechanisms.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):713-8. doi: 10.1073/pnas.1408869112. Epub 2015 Jan 5.
6
DNA brick crystals with prescribed depths.
Nat Chem. 2014 Nov;6(11):994-1002. doi: 10.1038/nchem.2083. Epub 2014 Oct 19.
7
DNA origami nanopores: developments, challenges and perspectives.
Nanoscale. 2014 Nov 6;6(23):14121-32. doi: 10.1039/c4nr04094e.
8
Membrane-spanning DNA nanopores with cytotoxic effect.
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12466-70. doi: 10.1002/anie.201405719. Epub 2014 Oct 7.
9
Refilling drug delivery depots through the blood.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12722-7. doi: 10.1073/pnas.1413027111. Epub 2014 Aug 19.
10
Spatial control of membrane receptor function using ligand nanocalipers.
Nat Methods. 2014 Aug;11(8):841-6. doi: 10.1038/nmeth.3025. Epub 2014 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验