Wermelskirchen Silvio, Leonhardi Jakob, Höhn Anne-Kathrin, Osterhoff Georg, Schopow Nikolas, Zimmermann Silke, Ebel Sebastian, Prasse Gordian, Henkelmann Jeanette, Denecke Timm, Meyer Hans-Jonas
Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.
Department of Pathology, University Hospital Leipzig, University of Leipzig, Germany.
J Bone Oncol. 2024 Jun 19;47:100616. doi: 10.1016/j.jbo.2024.100616. eCollection 2024 Aug.
Texture analysis can provide new imaging-based biomarkers. Texture analysis derived from computed tomography (CT) might be able to better characterize patients undergoing CT-guided percutaneous bone biopsy. The present study evaluated this and correlated texture features with bioptic outcome in patients undergoing CT-guided bone biopsy. Overall, 123 patients (89 female patients, 72.4 %) were included into the present study. All patients underwent CT-guided percutaneous bone biopsy with an 11 Gauge coaxial needle. Clinical parameters and quantitative imaging features were investigated. Random forest classifier was used to predict a positive biopsy result. Overall, 69 patients had osteolytic metastasis (56.1 %) and 54 had osteoblastic metastasis (43.9 %). The overall positive biopsy rate was 72 %. The developed radiomics model demonstrated a prediction accuracy of a positive biopsy result with an AUC of 0.75 [95 %CI 0.65 - 0.85]. In a subgroup of breast cancer patients, the model achieved an AUC of 0.85 [95 %CI 0.73 - 0.96]. In the subgroup of non-breast cancer patients, the signature achieved an AUC of 0.80 [95 %CI 0.60 - 0.99]. Quantitative CT imaging findings comprised of conventional and texture features can aid to predict the bioptic result of CT-guided bone biopsies. The developed radiomics signature aids in clinical decision-making, and could identify patients at risk for a negative biopsy.
纹理分析可以提供基于成像的新生物标志物。源自计算机断层扫描(CT)的纹理分析或许能够更好地对接受CT引导下经皮骨活检的患者进行特征描述。本研究对此进行了评估,并将纹理特征与接受CT引导下骨活检患者的活检结果相关联。总体而言,本研究纳入了123例患者(89例女性患者,占72.4%)。所有患者均接受了使用11号同轴针的CT引导下经皮骨活检。对临床参数和定量成像特征进行了研究。使用随机森林分类器预测活检结果为阳性。总体而言,69例患者有溶骨性转移(56.1%),54例有成骨性转移(43.9%)。总体活检阳性率为72%。所建立的放射组学模型对活检结果为阳性的预测准确率的AUC为0.75 [95%CI 0.65 - 0.85]。在乳腺癌患者亚组中,该模型的AUC为0.85 [95%CI 0.73 - 0.96]。在非乳腺癌患者亚组中,该特征的AUC为0.80 [95%CI 0.60 - 0.99]。由传统特征和纹理特征组成的定量CT成像结果有助于预测CT引导下骨活检的结果。所建立的放射组学特征有助于临床决策,并可识别活检结果为阴性的风险患者。