Chattopadhyay Tamoghna, Ozarkar Saket S, Buwa Ketaki, Joshy Neha Ann, Komandur Dheeraj, Naik Jayati, Thomopoulos Sophia I, Ver Steeg Greg, Ambite Jose Luis, Thompson Paul M
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.
University of California, Riverside, CA, United States.
Front Neurosci. 2024 Jul 2;18:1387196. doi: 10.3389/fnins.2024.1387196. eCollection 2024.
Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer's disease (AD) and is typically assessed through invasive procedures such as PET (positron emission tomography) or CSF (cerebrospinal fluid) assays. As new anti-Alzheimer's treatments can now successfully target amyloid pathology, there is a growing interest in predicting Aβ positivity (Aβ+) from less invasive, more widely available types of brain scans, such as T1-weighted (T1w) MRI. Here we compare multiple approaches to infer Aβ + from standard anatomical MRI: (1) classical machine learning algorithms, including logistic regression, XGBoost, and shallow artificial neural networks, (2) deep learning models based on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid ANN-CNN, combining the strengths of shallow and deep neural networks, (4) transfer learning models based on CNNs, and (5) 3D Vision Transformers. All models were trained on paired MRI/PET data from 1,847 elderly participants (mean age: 75.1 yrs. ± 7.6SD; 863 females/984 males; 661 healthy controls, 889 with mild cognitive impairment (MCI), and 297 with Dementia), scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We evaluated each model's balanced accuracy and F1 scores. While further tests on more diverse data are warranted, deep learning models trained on standard MRI showed promise for estimating Aβ + status, at least in people with MCI. This may offer a potential screening option before resorting to more invasive procedures.
大脑中异常的β-淀粉样蛋白(Aβ)积累是阿尔茨海默病(AD)的早期指标,通常通过正电子发射断层扫描(PET)或脑脊液(CSF)检测等侵入性程序进行评估。由于新的抗阿尔茨海默病治疗方法现在可以成功地针对淀粉样蛋白病理,因此人们越来越有兴趣从侵入性较小、更易于获得的脑扫描类型(如T1加权(T1w)MRI)预测Aβ阳性(Aβ+)。在这里,我们比较了从标准解剖MRI推断Aβ+的多种方法:(1)经典机器学习算法,包括逻辑回归、XGBoost和浅层人工神经网络;(2)基于二维和三维卷积神经网络(CNN)的深度学习模型;(3)结合浅层和深层神经网络优势的混合人工神经网络-卷积神经网络;(4)基于CNN的迁移学习模型;(5)三维视觉Transformer。所有模型均使用来自1847名老年参与者(平均年龄:75.1岁±7.6标准差;863名女性/984名男性;661名健康对照者、889名轻度认知障碍(MCI)患者和297名痴呆患者)的配对MRI/PET数据进行训练,这些数据是作为阿尔茨海默病神经影像学倡议的一部分进行扫描的。我们评估了每个模型的平衡准确率和F1分数。虽然有必要对更多样化的数据进行进一步测试,但在标准MRI上训练的深度学习模型显示出估计Aβ+状态的前景,至少在MCI患者中如此。这可能在采用更具侵入性的程序之前提供一种潜在的筛查选择。