Ground Technology Research Institute, Agency for Defense Development, Daejeon, Republic of Korea.
Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
Physiol Meas. 2021 Mar 11;42(2):025006. doi: 10.1088/1361-6579/abe524.
An objective and convenient primary triage procedure is needed for prioritizing patients who need help in mass casualty incident (MCI) situations, where there is a lack of medical staff and available resources. This study aimed to develop an automated remote decision-making algorithm that remotely categorize a patient's emergency level using clinical parameters that can be measured with a wearable device.
The algorithm was developed according to the following procedures. First, we used the National Trauma Data Bank data set, a large open trauma patient data set assembled by the American College of Surgeons (ACS). In addition, we performed pre-processing to exclude data when the vital sign or consciousness indicator value was missing or physiologically in an abnormal range. Second, we selected the T-RTS method, which classifies emergency levels into four classes (Delayed, Urgent, Immediate and Dead), as the primary outcome. Third, three machine learning methods widely used in the medical field, logistic regression, random forest, and deep neural network (DNN), were applied to build the algorithm. Finally, each method was evaluated using quantitative performance indicators including the macro-averaged f1 score, macro-averaged mean absolute error (MMAE), and the area under the receiver operating characteristic curve (AUC).
For total sets, the logistic regression had a macro-averaged f1 score of 0.673, an MMAE of 0.387 and an AUC value of 0.844 (95% CI, 0.843-0.845), while the random forest and DNN had macro-averaged f1 scores of 0.783 and 0.784, MMAEs of 0.297 and 0.298 and AUC values of 0.882 (95% CI, 0.881-0.883) and 0.883(95% CI, 0.881-0.884), respectively.
In a comprehensive analysis of these results, our algorithm demonstrated a viable approach that could be practically adopted in an MCI. In addition, it can be employed to transfer patients and to redistribute available resources according to their priorities.
在缺乏医务人员和可用资源的情况下,需要一种客观且便捷的初步分诊程序,以便对需要帮助的大批伤亡事故(MCI)患者进行优先级排序。本研究旨在开发一种自动化远程决策算法,该算法可使用可穿戴设备测量的临床参数对患者的紧急程度进行远程分类。
该算法的开发遵循以下步骤。首先,我们使用了美国外科医师学院(ACS)收集的大型开放创伤患者数据集 National Trauma Data Bank 数据集。此外,我们还进行了预处理,以排除生命体征或意识指标值缺失或生理状态异常的情况下的数据。其次,我们选择了 T-RTS 方法,该方法将紧急程度分为四级(延迟、紧急、立即和死亡)作为主要结果。第三,我们应用了三种在医学领域广泛使用的机器学习方法,逻辑回归、随机森林和深度神经网络(DNN),来构建算法。最后,我们使用定量性能指标(包括宏平均 f1 分数、宏平均平均绝对误差(MMAE)和接收器操作特征曲线下的面积(AUC))对每种方法进行了评估。
对于总数据集,逻辑回归的宏平均 f1 分数为 0.673,MMAE 为 0.387,AUC 值为 0.844(95%CI,0.843-0.845),而随机森林和 DNN 的宏平均 f1 分数分别为 0.783 和 0.784,MMAE 分别为 0.297 和 0.298,AUC 值分别为 0.882(95%CI,0.881-0.883)和 0.883(95%CI,0.881-0.884)。
在对这些结果的综合分析中,我们的算法证明了一种可行的方法,可在 MCI 中实际采用。此外,它可以用来根据优先级转移患者并重新分配可用资源。