Department of Radiology and Biomedical Imaging ,Yale School of Medicine, Yale University, New Haven, CT 06520.
Department of Radiology and Biomedical Imaging ,Yale School of Medicine, Yale University, New Haven, CT 06520..
Curr Probl Diagn Radiol. 2022 Jul-Aug;51(4):556-561. doi: 10.1067/j.cpradiol.2020.10.007. Epub 2020 Nov 15.
The timely reporting of critical results in radiology is paramount to improved patient outcomes. Artificial intelligence has the ability to improve quality by optimizing clinical radiology workflows. We sought to determine the impact of a United States Food and Drug Administration-approved machine learning (ML) algorithm, meant to mark computed tomography (CT) head examinations pending interpretation as higher probability for intracranial hemorrhage (ICH), on metrics across our healthcare system. We hypothesized that ML is associated with a reduction in report turnaround time (RTAT) and length of stay (LOS) in emergency department (ED) and inpatient populations.
An ML algorithm was incorporated across CT scanners at imaging sites in January 2018. RTAT and LOS were derived for reports and patients between July 2017 and December 2017 prior to implementation of ML and compared to those between January 2018 and June 2018 after implementation of ML. A total of 25,658 and 24,996 ED and inpatient cases were evaluated across the entire healthcare system before and after ML, respectively.
RTAT decreased from 75 to 69 minutes (P <0.001) at all facilities in the healthcare system. At the level 1 trauma center specifically, RTAT decreased from 67 to 59 minutes (P <0.001). ED LOS decreased from 471 to 425 minutes (P <0.001) for patients without ICH, and from 527 to 491 minutes for those with ICH (P = 0.456). Inpatient LOS decreased from 18.4 to 15.8 days for those without ICH (P = 0.001) and 18.1 to 15.8 days for those with ICH (P = 0.02).
We demonstrated that utilization of ML was associated with a statistically significant decrease in RTAT. There was also a significant decrease in LOS for ED patients without ICH, but not for ED patients with ICH. Further evaluation of the impact of such tools on patient care and outcomes is needed.
放射科及时报告危急结果对于改善患者预后至关重要。人工智能具有通过优化临床放射科工作流程来提高质量的能力。我们旨在确定美国食品和药物管理局批准的机器学习(ML)算法对我们整个医疗保健系统的各项指标的影响。我们假设 ML 与报告周转时间(RTAT)和急诊部(ED)和住院患者的住院时间(LOS)缩短有关。
2018 年 1 月,在影像科的 CT 扫描仪上引入了一种 ML 算法。在实施 ML 之前,根据 2017 年 7 月至 12 月的报告和患者获得 RTAT 和 LOS,并与实施 ML 之后的 2018 年 1 月至 6 月的报告和患者进行比较。在整个医疗保健系统中,分别对 25658 例 ED 和 24996 例住院患者进行了评估。
医疗系统中所有设施的 RTAT 从 75 分钟降至 69 分钟(P<0.001)。在 1 级创伤中心,RTAT 从 67 分钟降至 59 分钟(P<0.001)。对于无 ICH 的患者,ED LOS 从 471 分钟降至 425 分钟(P<0.001),对于有 ICH 的患者,从 527 分钟降至 491 分钟(P=0.456)。对于无 ICH 的患者,住院 LOS 从 18.4 天降至 15.8 天(P=0.001),对于有 ICH 的患者,从 18.1 天降至 15.8 天(P=0.02)。
我们证明了 ML 的使用与 RTAT 的统计显著降低有关。对于无 ICH 的 ED 患者,LOS 也有显著降低,但对于有 ICH 的 ED 患者则没有。需要进一步评估此类工具对患者护理和结果的影响。