Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA.
Radiol Med. 2022 Oct;127(10):1106-1123. doi: 10.1007/s11547-022-01530-4. Epub 2022 Aug 13.
Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance.
In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans.
In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives.
Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions. REGISTRATION-URL: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.
在过去的几年中,已经开发出并商业化了人工智能(AI)驱动的软件,用于检测颅内出血(ICH)和慢性脑微出血(CMBs)。然而,目前尚无系统评价总结所有这些工具或提供其性能的汇总估计。
在这项经过 PROSPERO 注册、符合 PRISMA 标准的系统评价中,我们试图编译和回顾所有在非对比 CT 扫描(NCCT)或 MRI 扫描上开发和/或测试用于检测 ICH 的 AI 算法以及在 MRI 扫描上检测 CMB 的 AI 算法的已发表的 MEDLINE 和 EMBASE 研究。
共有 40 项研究描述了 NCCT/MRI 上 ICH 检测的 AI 算法,19 项研究描述了 MRI 上 CMB 检测的 AI 算法。ICH 检测的总体敏感性、特异性和准确性分别为 92.06%、93.54%和 93.46%,CMBs 检测的总体敏感性、特异性和准确性分别为 91.6%、93.9%和 92.7%。这些算法开发中遇到的一些挑战包括创建大型、标记和平衡数据集的艰苦工作、成像检查的体积性质、算法的微调以及假阳性的减少。
在过去十年中,已经开发出许多 AI 驱动的软件工具。平均而言,它们在诊断 ICH 和 CMBs 方面具有高性能和专家级准确性。因此,在临床实践中实施这些工具可能会改善工作流程,并作为检测此类病变的安全措施。
https://www.crd.york.ac.uk/prospero/
CRD42021246848