Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea.
Redox Biol. 2024 Sep;75:103269. doi: 10.1016/j.redox.2024.103269. Epub 2024 Jul 16.
The ataxia telangiectasia mutated (ATM) protein kinase is best known as a master regulator of the DNA damage response. However, accumulating evidence has unveiled an equally vital function for ATM in sensing oxidative stress and orchestrating cellular antioxidant defenses to maintain redox homeostasis. ATM can be activated through a non-canonical pathway involving intermolecular disulfide crosslinking of the kinase dimers, distinct from its canonical activation by DNA double-strand breaks. Structural studies have elucidated the conformational changes that allow ATM to switch into an active redox-sensing state upon oxidation. Notably, loss of ATM function results in elevated reactive oxygen species (ROS) levels, altered antioxidant profiles, and mitochondrial dysfunction across multiple cell types and tissues. This oxidative stress arising from ATM deficiency has been implicated as a central driver of the neurodegenerative phenotypes in ataxia-telangiectasia (A-T) patients, potentially through mechanisms involving oxidative DNA damage, PARP hyperactivation, and widespread protein aggregation. Moreover, defective ATM oxidation sensing disrupts transcriptional programs and RNA metabolism, with detrimental impacts on neuronal homeostasis. Significantly, antioxidant therapy can ameliorate cellular and organismal abnormalities in various ATM-deficient models. This review synthesizes recent advances illuminating the multifaceted roles of ATM in preserving redox balance and mitigating oxidative insults, providing a unifying paradigm for understanding the complex pathogenesis of A-T disease.
共济失调毛细血管扩张突变(ATM)蛋白激酶最著名的是作为 DNA 损伤反应的主要调节剂。然而,越来越多的证据揭示了 ATM 在感知氧化应激和协调细胞抗氧化防御以维持氧化还原平衡方面同样重要的功能。ATM 可以通过涉及激酶二聚体分子间二硫键交联的非经典途径激活,与由 DNA 双链断裂引起的经典激活途径不同。结构研究阐明了允许 ATM 在氧化时切换到活性氧化感应状态的构象变化。值得注意的是,ATM 功能的丧失会导致多种细胞类型和组织中活性氧(ROS)水平升高、抗氧化剂谱改变和线粒体功能障碍。这种源自 ATM 缺陷的氧化应激被认为是共济失调毛细血管扩张症(A-T)患者神经退行性表型的主要驱动因素,可能通过涉及氧化 DNA 损伤、PARP 过度激活和广泛蛋白质聚集的机制。此外,有缺陷的 ATM 氧化感应会破坏转录程序和 RNA 代谢,对神经元稳态产生有害影响。重要的是,抗氧化治疗可以改善各种 ATM 缺陷模型中的细胞和机体异常。这篇综述综合了最近的进展,阐明了 ATM 在维持氧化还原平衡和减轻氧化损伤方面的多方面作用,为理解 A-T 疾病的复杂发病机制提供了一个统一的范例。