Suppr超能文献

基于掩蔽域自适应自监督深度学习的光声计算机断层成像重建方法。

Masked cross-domain self-supervised deep learning framework for photoacoustic computed tomography reconstruction.

机构信息

School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.

出版信息

Neural Netw. 2024 Nov;179:106515. doi: 10.1016/j.neunet.2024.106515. Epub 2024 Jul 7.

Abstract

Accurate image reconstruction is crucial for photoacoustic (PA) computed tomography (PACT). Recently, deep learning has been used to reconstruct PA images with a supervised scheme, which requires high-quality images as ground truth labels. However, practical implementations encounter inevitable trade-offs between cost and performance due to the expensive nature of employing additional channels for accessing more measurements. Here, we propose a masked cross-domain self-supervised (CDSS) reconstruction strategy to overcome the lack of ground truth labels from limited PA measurements. We implement the self-supervised reconstruction in a model-based form. Simultaneously, we take advantage of self-supervision to enforce the consistency of measurements and images across three partitions of the measured PA data, achieved by randomly masking different channels. Our findings indicate that dynamically masking a substantial proportion of channels, such as 80%, yields meaningful self-supervisors in both the image and signal domains. Consequently, this approach reduces the multiplicity of pseudo solutions and enables efficient image reconstruction using fewer PA measurements, ultimately minimizing reconstruction error. Experimental results on in-vivo PACT dataset of mice demonstrate the potential of our self-supervised framework. Moreover, our method exhibits impressive performance, achieving a structural similarity index (SSIM) of 0.87 in an extreme sparse case utilizing only 13 channels, which outperforms the performance of the supervised scheme with 16 channels (0.77 SSIM). Adding to its advantages, our method can be deployed on different trainable models in an end-to-end manner, further enhancing its versatility and applicability.

摘要

准确的图像重建对于光声(PA)计算机断层扫描(PACT)至关重要。最近,深度学习已被用于使用有监督方案重建 PA 图像,该方案需要高质量的图像作为地面真实标签。然而,由于采用额外的通道来获取更多测量值的成本较高,实际实施在成本和性能之间不可避免地存在权衡。在这里,我们提出了一种掩蔽跨域自监督(CDSS)重建策略,以克服有限的 PA 测量缺乏地面真实标签的问题。我们以基于模型的形式实现自监督重建。同时,我们利用自监督来强制测量值和图像在测量 PA 数据的三个分区之间的一致性,这是通过随机掩蔽不同的通道来实现的。我们的研究结果表明,动态掩蔽大量通道(例如 80%)在图像和信号域中都能产生有意义的自监督。因此,这种方法减少了伪解的数量,并能够使用更少的 PA 测量来有效地重建图像,最终最小化重建误差。在小鼠体内 PACT 数据集上的实验结果表明了我们的自监督框架的潜力。此外,我们的方法表现出令人印象深刻的性能,在仅使用 13 个通道的极端稀疏情况下,结构相似性指数(SSIM)达到 0.87,优于使用 16 个通道的有监督方案(0.77 SSIM)。除此之外,我们的方法可以以端到端的方式部署在不同的可训练模型上,进一步增强其通用性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验