零样本伪影2伪影:用于光声成像的自激励伪影去除

Zero-Shot Artifact2Artifact: Self-incentive artifact removal for photoacoustic imaging.

作者信息

Li Shuang, Chen Qian, Kim Chulhong, Choi Seongwook, Wang Yibing, Zhang Yu, Li Changhui

机构信息

College of Future Technology, Peking University, Beijing, China.

Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

出版信息

Photoacoustics. 2025 Apr 18;43:100723. doi: 10.1016/j.pacs.2025.100723. eCollection 2025 Jun.

Abstract

Three-dimensional (3D) photoacoustic imaging (PAI) with detector arrays has shown superior imaging capabilities in biomedical applications. However, the quality of 3D PAI is often degraded due to reconstruction artifacts caused by sparse detectors. Existing iterative or deep learning-based methods are either time-consuming or require large training datasets, limiting their practical application. Here, we propose Zero-Shot Artifact2Artifact (ZS-A2A), a zero-shot self-supervised artifact removal method based on a super-lightweight network, which leverages the fact that patterns of artifacts are more sensitive to sensor data loss. By randomly dropping acquired PA data, it spontaneously generates subset data to reconstruct images, which in turn stimulates the network to learn the artifact patterns in reconstruction results, thus enabling zero-shot artifact removal. This approach requires neither training data nor prior knowledge of the artifacts, making it suitable for artifact removal for arbitrary detector array configurations. We validated ZS-A2A in both simulation study and animal experiments. Results demonstrate that ZS-A2A achieves high performance compared to existing zero-shot methods.

摘要

基于探测器阵列的三维(3D)光声成像(PAI)在生物医学应用中展现出了卓越的成像能力。然而,由于稀疏探测器导致的重建伪影,3D PAI的质量常常会下降。现有的基于迭代或深度学习的方法要么耗时,要么需要大量的训练数据集,这限制了它们的实际应用。在此,我们提出了零样本伪影到伪影(ZS-A2A)方法,这是一种基于超轻量级网络的零样本自监督伪影去除方法,该方法利用了伪影模式对传感器数据丢失更为敏感这一事实。通过随机丢弃采集到的光声数据,它能自发地生成子集数据来重建图像,进而促使网络学习重建结果中的伪影模式,从而实现零样本伪影去除。这种方法既不需要训练数据,也不需要关于伪影的先验知识,适用于任意探测器阵列配置的伪影去除。我们在模拟研究和动物实验中对ZS-A2A进行了验证。结果表明,与现有的零样本方法相比,ZS-A2A具有高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5f/12051505/bce5c6eaf70a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索