Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Zhejiang Lab, Hangzhou, Zhejiang, China.
Br J Ophthalmol. 2024 Oct 22;108(11):1555-1563. doi: 10.1136/bjo-2023-323871.
To develop and externally test deep learning (DL) models for assessing the image quality of three-dimensional (3D) macular scans from Cirrus and Spectralis optical coherence tomography devices.
We retrospectively collected two data sets including 2277 Cirrus 3D scans and 1557 Spectralis 3D scans, respectively, for training (70%), fine-tuning (10%) and internal validation (20%) from electronic medical and research records at The Chinese University of Hong Kong Eye Centre and the Hong Kong Eye Hospital. Scans with various eye diseases (eg, diabetic macular oedema, age-related macular degeneration, polypoidal choroidal vasculopathy and pathological myopia), and scans of normal eyes from adults and children were included. Two graders labelled each 3D scan as gradable or ungradable, according to standardised criteria. We used a 3D version of the residual network (ResNet)-18 for Cirrus 3D scans and a multiple-instance learning pipline with ResNet-18 for Spectralis 3D scans. Two deep learning (DL) models were further tested via three unseen Cirrus data sets from Singapore and five unseen Spectralis data sets from India, Australia and Hong Kong, respectively.
In the internal validation, the models achieved the area under curves (AUCs) of 0.930 (0.885-0.976) and 0.906 (0.863-0.948) for assessing the Cirrus 3D scans and Spectralis 3D scans, respectively. In the external testing, the models showed robust performance with AUCs ranging from 0.832 (0.730-0.934) to 0.930 (0.906-0.953) and 0.891 (0.836-0.945) to 0.962 (0.918-1.000), respectively.
Our models could be used for filtering out ungradable 3D scans and further incorporated with a disease-detection DL model, allowing a fully automated eye disease detection workflow.
开发并外部测试深度学习(DL)模型,以评估 Cirrus 和 Spectralis 光学相干断层扫描设备的三维(3D)黄斑扫描的图像质量。
我们回顾性地从香港中文大学眼科中心和香港眼科医院的电子病历和研究记录中收集了两个数据集,分别包括 2277 个 Cirrus 3D 扫描和 1557 个 Spectralis 3D 扫描,用于训练(70%)、微调(10%)和内部验证(20%)。扫描包括各种眼病(如糖尿病性黄斑水肿、年龄相关性黄斑变性、息肉样脉络膜血管病变和病理性近视)以及成人和儿童的正常眼扫描。两位分级员根据标准化标准将每个 3D 扫描标记为可分级或不可分级。我们使用 3D 版本的残差网络(ResNet)-18 用于 Cirrus 3D 扫描,以及带有 ResNet-18 的多实例学习流水线用于 Spectralis 3D 扫描。两个深度学习(DL)模型进一步通过来自新加坡的三个未见过的 Cirrus 数据集和来自印度、澳大利亚和香港的五个未见过的 Spectralis 数据集进行了测试。
在内部验证中,模型对 Cirrus 3D 扫描和 Spectralis 3D 扫描的评估分别获得了 0.930(0.885-0.976)和 0.906(0.863-0.948)的曲线下面积(AUC)。在外部测试中,模型表现出稳健的性能,AUC 范围从 0.832(0.730-0.934)到 0.930(0.906-0.953)和 0.891(0.836-0.945)到 0.962(0.918-1.000)。
我们的模型可用于筛选不可分级的 3D 扫描,并进一步与疾病检测的 DL 模型结合,实现完全自动化的眼病检测工作流程。