Suppr超能文献

加强海上运输安全:基于数据驱动的恐怖袭击风险贝叶斯网络分析

Enhancing maritime transportation security: A data-driven Bayesian network analysis of terrorist attack risks.

作者信息

Mohsendokht Massoud, Li Huanhuan, Kontovas Christos, Chang Chia-Hsun, Qu Zhuohua, Yang Zaili

机构信息

Faculty of Engineering and Technology, Liverpool Logistics, Offshore and Marine (LOOM) Research Institute, Liverpool John Moores University, Liverpool, Merseyside, UK.

Liverpool Business School, Liverpool John Moores University, Liverpool, Merseyside, UK.

出版信息

Risk Anal. 2025 Feb;45(2):283-306. doi: 10.1111/risa.15750. Epub 2024 Jul 21.

Abstract

Maritime terrorist accidents have a significant low-frequency-high-consequence feature and, thus, require new research to address the associated inherent uncertainty and the scarce literature in the field. This article aims to develop a novel method for maritime security risk analysis. It employs real accident data from maritime terrorist attacks over the past two decades to train a data-driven Bayesian network (DDBN) model. The findings help pinpoint key contributing factors, scrutinize their interdependencies, ascertain the probability of different terrorist scenarios, and describe their impact on different manifestations of maritime terrorism. The established DDBN model undergoes a thorough verification and validation process employing various techniques, such as sensitivity, metrics, and comparative analyses. Additionally, it is tested against recent real-world cases to demonstrate its effectiveness in both retrospective and prospective risk propagation, encompassing both diagnostic and predictive capabilities. These findings provide valuable insights for the various stakeholders, including companies and government bodies, fostering comprehension of maritime terrorism and potentially fortifying preventive measures and emergency management.

摘要

海上恐怖主义事故具有显著的低频高后果特征,因此,需要开展新的研究来应对相关的固有不确定性以及该领域稀缺的文献资料。本文旨在开发一种用于海上安全风险分析的新方法。它利用过去二十年海上恐怖袭击的真实事故数据来训练一个数据驱动的贝叶斯网络(DDBN)模型。研究结果有助于找出关键影响因素,审视它们之间的相互依存关系,确定不同恐怖主义情景的概率,并描述其对海上恐怖主义不同表现形式的影响。所建立的DDBN模型采用各种技术,如敏感性分析、指标分析和比较分析,进行了全面的验证和确认过程。此外,它还针对近期的实际案例进行了测试,以证明其在回顾性和前瞻性风险传播方面的有效性,涵盖诊断和预测能力。这些研究结果为包括公司和政府机构在内的各种利益相关者提供了有价值的见解,有助于加深对海上恐怖主义的理解,并有可能加强预防措施和应急管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验