文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用小波变换和AdaptUNet进行高效的结直肠息肉分割:一种混合U-Net。

Efficient colorectal polyp segmentation using wavelet transformation and AdaptUNet: A hybrid U-Net.

作者信息

Rajasekar Devika, Theja Girish, Prusty Manas Ranjan, Chinara Suchismita

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India.

出版信息

Heliyon. 2024 Jun 26;10(13):e33655. doi: 10.1016/j.heliyon.2024.e33655. eCollection 2024 Jul 15.


DOI:10.1016/j.heliyon.2024.e33655
PMID:39040380
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11261057/
Abstract

The prevalence of colorectal cancer, primarily emerging from polyps, underscores the importance of their early detection in colonoscopy images. Due to the inherent complexity and variability of polyp appearances, the task stands difficult despite recent advances in medical technology. To tackle these challenges, a deep learning model featuring a customized U-Net architecture, AdaptUNet is proposed. Attention mechanisms and skip connections facilitate the effective combination of low-level details and high-level contextual information for accurate polyp segmentation. Further, wavelet transformations are used to extract useful features overlooked in conventional image processing. The model achieves benchmark results with a Dice coefficient of 0.9104, an Intersection over Union (IoU) coefficient of 0.8368, and a Balanced Accuracy of 0.9880 on the CVC-300 dataset. Additionally, it shows exceptional performance on other datasets, including Kvasir-SEG and Etis-LaribDB. Training was performed using the Hyper Kvasir segmented images dataset, further evidencing the model's ability to handle diverse data inputs. The proposed method offers a comprehensive and efficient implementation for polyp detection without compromising performance, thus promising an improved precision and reduction in manual labour for colorectal polyp detection.

摘要

结直肠癌主要由息肉发展而来,其高发性凸显了在结肠镜检查图像中早期检测息肉的重要性。由于息肉外观具有内在的复杂性和变异性,尽管医学技术最近取得了进展,但这项任务仍然艰巨。为应对这些挑战,提出了一种具有定制U-Net架构的深度学习模型AdaptUNet。注意力机制和跳跃连接有助于有效结合低级细节和高级上下文信息,以实现准确的息肉分割。此外,小波变换用于提取传统图像处理中被忽视的有用特征。该模型在CVC-300数据集上取得了基准结果,骰子系数为0.9104,交并比(IoU)系数为0.8368,平衡准确率为0.9880。此外,它在包括Kvasir-SEG和Etis-LaribDB在内的其他数据集上也表现出色。使用Hyper Kvasir分割图像数据集进行训练,进一步证明了该模型处理各种数据输入的能力。所提出的方法为息肉检测提供了一种全面且高效的实现方式,而不会影响性能,因此有望提高结直肠息肉检测的精度并减少人工劳动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/4cf530917bdd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/c14615e5b080/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/f04a56e11b2b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/ae6d5b3af19b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/6d428259dede/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/fa550bfa81fd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/b60310b3ed89/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/2eb07845e2de/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/bda63673a3d9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/bcfff1261a03/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/4cf530917bdd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/c14615e5b080/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/f04a56e11b2b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/ae6d5b3af19b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/6d428259dede/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/fa550bfa81fd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/b60310b3ed89/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/2eb07845e2de/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/bda63673a3d9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/bcfff1261a03/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11261057/4cf530917bdd/gr10.jpg

相似文献

[1]
Efficient colorectal polyp segmentation using wavelet transformation and AdaptUNet: A hybrid U-Net.

Heliyon. 2024-6-26

[2]
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy.

Comput Biol Med. 2021-10

[3]
UViT-Seg: An Efficient ViT and U-Net-Based Framework for Accurate Colorectal Polyp Segmentation in Colonoscopy and WCE Images.

J Imaging Inform Med. 2024-10

[4]
GAR-Net: Guided Attention Residual Network for Polyp Segmentation from Colonoscopy Video Frames.

Diagnostics (Basel). 2022-12-30

[5]
Using DUCK-Net for polyp image segmentation.

Sci Rep. 2023-6-16

[6]
HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation.

Med Phys. 2023-3

[7]
Enhanced accuracy with Segmentation of Colorectal Polyp using NanoNetB, and Conditional Random Field Test-Time Augmentation.

Front Robot AI. 2024-8-9

[8]
IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques.

Sensors (Basel). 2023-9-7

[9]
CFHA-Net: A polyp segmentation method with cross-scale fusion strategy and hybrid attention.

Comput Biol Med. 2023-9

[10]
PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images.

Comput Biol Med. 2021-1

引用本文的文献

[1]
Cascade Aggregation Network for Accurate Polyp Segmentation.

IET Syst Biol. 2025

[2]
Automatic detection of gastrointestinal system abnormalities using deep learning-based segmentation and classification methods.

Health Inf Sci Syst. 2025-5-21

[3]
Dynamic Frequency-Decoupled Refinement Network for Polyp Segmentation.

Bioengineering (Basel). 2025-3-11

本文引用的文献

[1]
Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.

Mod Pathol. 2023-5

[2]
Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks.

J Healthc Eng. 2022

[3]
Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques.

Sensors (Basel). 2022-11-28

[4]
Polyp detection on video colonoscopy using a hybrid 2D/3D CNN.

Med Image Anal. 2022-11

[5]
An Ensemble-Based Deep Convolutional Neural Network for Computer-Aided Polyps Identification From Colonoscopy.

Front Genet. 2022-4-26

[6]
Attention based multi-scale parallel network for polyp segmentation.

Comput Biol Med. 2022-7

[7]
Detection and Classification of Colorectal Polyp Using Deep Learning.

Biomed Res Int. 2022

[8]
A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer.

Sci Rep. 2022-2-9

[9]
Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models.

Int J Med Inform. 2022-3

[10]
Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging.

Diagnostics (Basel). 2021-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索