Rajasekar Devika, Theja Girish, Prusty Manas Ranjan, Chinara Suchismita
School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.
Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India.
Heliyon. 2024 Jun 26;10(13):e33655. doi: 10.1016/j.heliyon.2024.e33655. eCollection 2024 Jul 15.
The prevalence of colorectal cancer, primarily emerging from polyps, underscores the importance of their early detection in colonoscopy images. Due to the inherent complexity and variability of polyp appearances, the task stands difficult despite recent advances in medical technology. To tackle these challenges, a deep learning model featuring a customized U-Net architecture, AdaptUNet is proposed. Attention mechanisms and skip connections facilitate the effective combination of low-level details and high-level contextual information for accurate polyp segmentation. Further, wavelet transformations are used to extract useful features overlooked in conventional image processing. The model achieves benchmark results with a Dice coefficient of 0.9104, an Intersection over Union (IoU) coefficient of 0.8368, and a Balanced Accuracy of 0.9880 on the CVC-300 dataset. Additionally, it shows exceptional performance on other datasets, including Kvasir-SEG and Etis-LaribDB. Training was performed using the Hyper Kvasir segmented images dataset, further evidencing the model's ability to handle diverse data inputs. The proposed method offers a comprehensive and efficient implementation for polyp detection without compromising performance, thus promising an improved precision and reduction in manual labour for colorectal polyp detection.
结直肠癌主要由息肉发展而来,其高发性凸显了在结肠镜检查图像中早期检测息肉的重要性。由于息肉外观具有内在的复杂性和变异性,尽管医学技术最近取得了进展,但这项任务仍然艰巨。为应对这些挑战,提出了一种具有定制U-Net架构的深度学习模型AdaptUNet。注意力机制和跳跃连接有助于有效结合低级细节和高级上下文信息,以实现准确的息肉分割。此外,小波变换用于提取传统图像处理中被忽视的有用特征。该模型在CVC-300数据集上取得了基准结果,骰子系数为0.9104,交并比(IoU)系数为0.8368,平衡准确率为0.9880。此外,它在包括Kvasir-SEG和Etis-LaribDB在内的其他数据集上也表现出色。使用Hyper Kvasir分割图像数据集进行训练,进一步证明了该模型处理各种数据输入的能力。所提出的方法为息肉检测提供了一种全面且高效的实现方式,而不会影响性能,因此有望提高结直肠息肉检测的精度并减少人工劳动。
Comput Biol Med. 2021-10
Diagnostics (Basel). 2022-12-30
Sci Rep. 2023-6-16
Comput Biol Med. 2023-9
IET Syst Biol. 2025
Bioengineering (Basel). 2025-3-11
Sensors (Basel). 2022-11-28
Med Image Anal. 2022-11
Comput Biol Med. 2022-7
Biomed Res Int. 2022
Diagnostics (Basel). 2021-9-30