Suppr超能文献

从法定健康保险数据库中识别心力衰竭再入院患者的预测因素:回顾性机器学习研究。

Identifying Predictors of Heart Failure Readmission in Patients From a Statutory Health Insurance Database: Retrospective Machine Learning Study.

作者信息

Levinson Rebecca T, Paul Cinara, Meid Andreas D, Schultz Jobst-Hendrik, Wild Beate

机构信息

Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.

Medical Faculty of Heidelberg, Internal Medicine IX - Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.

出版信息

JMIR Cardio. 2024 Jul 23;8:e54994. doi: 10.2196/54994.

Abstract

BACKGROUND

Patients with heart failure (HF) are the most commonly readmitted group of adult patients in Germany. Most patients with HF are readmitted for noncardiovascular reasons. Understanding the relevance of HF management outside the hospital setting is critical to understanding HF and factors that lead to readmission. Application of machine learning (ML) on data from statutory health insurance (SHI) allows the evaluation of large longitudinal data sets representative of the general population to support clinical decision-making.

OBJECTIVE

This study aims to evaluate the ability of ML methods to predict 1-year all-cause and HF-specific readmission after initial HF-related admission of patients with HF in outpatient SHI data and identify important predictors.

METHODS

We identified individuals with HF using outpatient data from 2012 to 2018 from the AOK Baden-Württemberg SHI in Germany. We then trained and applied regression and ML algorithms to predict the first all-cause and HF-specific readmission in the year after the first admission for HF. We fitted a random forest, an elastic net, a stepwise regression, and a logistic regression to predict readmission by using diagnosis codes, drug exposures, demographics (age, sex, nationality, and type of coverage within SHI), degree of rurality for residence, and participation in disease management programs for common chronic conditions (diabetes mellitus type 1 and 2, breast cancer, chronic obstructive pulmonary disease, and coronary heart disease). We then evaluated the predictors of HF readmission according to their importance and direction to predict readmission.

RESULTS

Our final data set consisted of 97,529 individuals with HF, and 78,044 (80%) were readmitted within the observation period. Of the tested modeling approaches, the random forest approach best predicted 1-year all-cause and HF-specific readmission with a C-statistic of 0.68 and 0.69, respectively. Important predictors for 1-year all-cause readmission included prescription of pantoprazole, chronic obstructive pulmonary disease, atherosclerosis, sex, rurality, and participation in disease management programs for type 2 diabetes mellitus and coronary heart disease. Relevant features for HF-specific readmission included a large number of canonical HF comorbidities.

CONCLUSIONS

While many of the predictors we identified were known to be relevant comorbidities for HF, we also uncovered several novel associations. Disease management programs have widely been shown to be effective at managing chronic disease; however, our results indicate that in the short term they may be useful for targeting patients with HF with comorbidity at increased risk of readmission. Our results also show that living in a more rural location increases the risk of readmission. Overall, factors beyond comorbid disease were relevant for risk of HF readmission. This finding may impact how outpatient physicians identify and monitor patients at risk of HF readmission.

摘要

背景

心力衰竭(HF)患者是德国成年患者中再入院率最高的群体。大多数HF患者因非心血管原因再次入院。了解医院外HF管理的相关性对于理解HF及导致再入院的因素至关重要。将机器学习(ML)应用于法定健康保险(SHI)数据可评估代表普通人群的大型纵向数据集,以支持临床决策。

目的

本研究旨在评估ML方法预测门诊SHI数据中HF患者首次因HF相关入院后1年全因再入院和HF特异性再入院的能力,并确定重要预测因素。

方法

我们使用德国巴登-符腾堡州AOK SHI 2012年至2018年的门诊数据识别HF患者。然后我们训练并应用回归和ML算法来预测首次HF入院后1年内的首次全因再入院和HF特异性再入院。我们拟合了随机森林、弹性网、逐步回归和逻辑回归模型,通过使用诊断代码、药物暴露、人口统计学特征(年龄、性别、国籍和SHI内的保险类型)、居住农村程度以及参与常见慢性病(1型和2型糖尿病、乳腺癌、慢性阻塞性肺疾病和冠心病)的疾病管理项目来预测再入院。然后我们根据预测再入院的重要性和方向评估HF再入院的预测因素。

结果

我们的最终数据集包括97529例HF患者,其中78044例(80%)在观察期内再次入院。在测试的建模方法中,随机森林方法对1年全因再入院和HF特异性再入院的预测效果最佳,C统计量分别为0.68和0.69。1年全因再入院的重要预测因素包括泮托拉唑处方、慢性阻塞性肺疾病、动脉粥样硬化、性别、农村程度以及参与2型糖尿病和冠心病的疾病管理项目。HF特异性再入院的相关特征包括大量典型的HF合并症。

结论

虽然我们确定的许多预测因素已知是HF的相关合并症,但我们也发现了一些新的关联。疾病管理项目已被广泛证明在管理慢性病方面有效;然而,我们的结果表明,短期内它们可能有助于针对合并症且再入院风险增加的HF患者。我们的结果还表明,生活在农村地区会增加再入院风险。总体而言,合并症以外的因素与HF再入院风险相关。这一发现可能会影响门诊医生识别和监测有HF再入院风险患者的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b155/11318205/a2c0faa2659d/cardio_v8i1e54994_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验