Suppr超能文献

从RGB图像到神经形态事件流的脉冲迁移学习

Spiking Transfer Learning From RGB Image to Neuromorphic Event Stream.

作者信息

Zhan Qiugang, Liu Guisong, Xie Xiurui, Tao Ran, Zhang Malu, Tang Huajin

出版信息

IEEE Trans Image Process. 2024;33:4274-4287. doi: 10.1109/TIP.2024.3430043. Epub 2024 Jul 30.

Abstract

Recent advances in bio-inspired vision with event cameras and associated spiking neural networks (SNNs) have provided promising solutions for low-power consumption neuromorphic tasks. However, as the research of event cameras is still in its infancy, the amount of labeled event stream data is much less than that of the RGB database. The traditional method of converting static images into event streams by simulation to increase the sample size cannot simulate the characteristics of event cameras such as high temporal resolution. To take advantage of both the rich knowledge in labeled RGB images and the features of the event camera, we propose a transfer learning method from the RGB to the event domain in this paper. Specifically, we first introduce a transfer learning framework named R2ETL (RGB to Event Transfer Learning), including a novel encoding alignment module and a feature alignment module. Then, we introduce the temporal centered kernel alignment (TCKA) loss function to improve the efficiency of transfer learning. It aligns the distribution of temporal neuron states by adding a temporal learning constraint. Finally, we theoretically analyze the amount of data required by the deep neuromorphic model to prove the necessity of our method. Numerous experiments demonstrate that our proposed framework outperforms the state-of-the-art SNN and artificial neural network (ANN) models trained on event streams, including N-MNIST, CIFAR10-DVS and N-Caltech101. This indicates that the R2ETL framework is able to leverage the knowledge of labeled RGB images to help the training of SNN on event streams.

摘要

近期,受生物启发的视觉技术在事件相机及相关脉冲神经网络(SNN)方面取得的进展,为低功耗神经形态任务提供了颇具前景的解决方案。然而,由于事件相机的研究仍处于起步阶段,带标签的事件流数据量远少于RGB数据库。通过模拟将静态图像转换为事件流以增加样本量的传统方法,无法模拟事件相机的高时间分辨率等特性。为了利用带标签的RGB图像中的丰富知识以及事件相机的特性,我们在本文中提出了一种从RGB到事件域的迁移学习方法。具体而言,我们首先引入了一个名为R2ETL(RGB到事件迁移学习)的迁移学习框架,包括一个新颖的编码对齐模块和一个特征对齐模块。然后,我们引入了时间中心核对齐(TCKA)损失函数来提高迁移学习的效率。它通过添加时间学习约束来对齐时间神经元状态的分布。最后,我们从理论上分析了深度神经形态模型所需的数据量,以证明我们方法的必要性。大量实验表明,我们提出的框架优于在事件流上训练的现有SNN和人工神经网络(ANN)模型,包括N-MNIST、CIFAR10-DVS和N-Caltech101。这表明R2ETL框架能够利用带标签的RGB图像的知识来帮助SNN在事件流上进行训练。

相似文献

1
Spiking Transfer Learning From RGB Image to Neuromorphic Event Stream.从RGB图像到神经形态事件流的脉冲迁移学习
IEEE Trans Image Process. 2024;33:4274-4287. doi: 10.1109/TIP.2024.3430043. Epub 2024 Jul 30.
2
Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.深度尖峰神经网络在动态视觉传感中的优化。
Neural Netw. 2021 Dec;144:686-698. doi: 10.1016/j.neunet.2021.09.022. Epub 2021 Oct 5.
9
TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks.TCJA-SNN:脉冲神经网络的时间-通道联合注意力机制
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5112-5125. doi: 10.1109/TNNLS.2024.3377717. Epub 2025 Feb 28.
10
Boost event-driven tactile learning with location spiking neurons.利用位置发放神经元增强事件驱动的触觉学习。
Front Neurosci. 2023 Apr 21;17:1127537. doi: 10.3389/fnins.2023.1127537. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验