Suppr超能文献

SaccpaNet:一种基于可分离空洞卷积的级联金字塔注意力网络,用于通过跨模态知识转移估计身体地标以进行毛毯下睡眠姿势分类。

SaccpaNet: A Separable Atrous Convolution-based Cascade Pyramid Attention Network to Estimate Body Landmarks Using Cross-modal Knowledge Transfer for Under-blanket Sleep Posture Classification.

作者信息

Tam Andy Yiu-Chau, Mao Ye-Jiao, Lai Derek Ka-Hei, Chan Andy Chi-Ho, Cheung Daphne Sze Ki, Kearns William, Wong Duo Wai-Chi, Cheung James Chung-Wai

出版信息

IEEE J Biomed Health Inform. 2024 Jul 23;PP. doi: 10.1109/JBHI.2024.3432195.

Abstract

The accuracy of sleep posture assessment in standard polysomnography might be compromised by the unfamiliar sleep lab environment. In this work, we aim to develop a depth camera-based sleep posture monitoring and classification system for home or community usage and tailor a deep learning model that can account for blanket interference. Our model included a joint coordinate estimation network (JCE) and sleep posture classification network (SPC). SaccpaNet (Separable Atrous Convolution-based Cascade Pyramid Attention Network) was developed using a combination of pyramidal structure of residual separable atrous convolution unit to reduce computational cost and enlarge receptive field. The Saccpa attention unit served as the core of JCE and SPC, while different backbones for SPC were also evaluated. The model was cross-modally pretrained by RGB images from the COCO whole body dataset and then trained/tested using dept image data collected from 150 participants performing seven sleep postures across four blanket conditions. Besides, we applied a data augmentation technique that used intra-class mix-up to synthesize blanket conditions; and an overlaid flip-cut to synthesize partially covered blanket conditions for a robustness that we referred to as the Post-hoc Data Augmentation Robustness Test (PhD-ART). Our model achieved an average precision of estimated joint coordinate (in terms of PCK@0.1) of 0.652 and demonstrated adequate robustness. The overall classification accuracy of sleep postures (F1-score) was 0.885 and 0.940, for 7- and 6-class classification, respectively. Our system was resistant to the interference of blanket, with a spread difference of 2.5%.

摘要

标准多导睡眠图中睡眠姿势评估的准确性可能会受到陌生的睡眠实验室环境的影响。在这项工作中,我们旨在开发一种基于深度相机的睡眠姿势监测和分类系统,用于家庭或社区使用,并定制一种能够考虑毯子干扰的深度学习模型。我们的模型包括一个关节坐标估计网络(JCE)和睡眠姿势分类网络(SPC)。SaccpaNet(基于可分离空洞卷积的级联金字塔注意力网络)是通过结合残差可分离空洞卷积单元的金字塔结构开发的,以降低计算成本并扩大感受野。Saccpa注意力单元作为JCE和SPC的核心,同时还评估了SPC的不同骨干网络。该模型通过来自COCO全身数据集的RGB图像进行跨模态预训练,然后使用从150名参与者在四种毯子条件下执行七种睡眠姿势收集的深度图像数据进行训练/测试。此外,我们应用了一种数据增强技术,即使用类内混合来合成毯子条件;以及一种叠加翻转裁剪来合成部分覆盖的毯子条件,以实现我们称为事后数据增强鲁棒性测试(PhD-ART)的鲁棒性。我们的模型在估计关节坐标方面(以PCK@0.1计)的平均精度达到了0.652,并表现出足够的鲁棒性。睡眠姿势的总体分类准确率(F1分数)在7类和6类分类中分别为0.885和0.940。我们的系统能够抵抗毯子的干扰,差异幅度为2.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验