Suppr超能文献

毕加索对计算机科学的怀疑与生成式人工智能的黎明:“机器在回路中”的追问与回答之后的问题

The Picasso's skepticism on computer science and the dawn of generative AI: questions after the answers to keep "machines-in-the-loop".

机构信息

Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.

Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende 43, Baronissi, 84081, Salerno, Italy.

出版信息

Eur Radiol Exp. 2024 Jul 24;8(1):81. doi: 10.1186/s41747-024-00485-7.

Abstract

Starting from Picasso's quote ("Computers are useless. They can only give you answers"), we discuss the introduction of generative artificial intelligence (AI), including generative adversarial networks (GANs) and transformer-based architectures such as large language models (LLMs) in radiology, where their potential in reporting, image synthesis, and analysis is notable. However, the need for improvements, evaluations, and regulations prior to clinical use is also clear. Integration of LLMs into clinical workflow needs cautiousness, to avoid or at least mitigate risks associated with false diagnostic suggestions. We highlight challenges in synthetic image generation, inherent biases in AI models, and privacy concerns, stressing the importance of diverse training datasets and robust data privacy measures. We examine the regulatory landscape, including the 2023 Executive Order on AI in the United States and the 2024 AI Act in the European Union, which set standards for AI applications in healthcare. This manuscript contributes to the field by emphasizing the necessity of maintaining the human element in medical procedures while leveraging generative AI, advocating for a "machines-in-the-loop" approach.

摘要

从毕加索的名言(“计算机毫无用处,它们只能给你答案”)开始,我们讨论了生成式人工智能(AI)在放射学中的引入,包括生成式对抗网络(GAN)和基于转换器的架构,如大型语言模型(LLM),它们在报告、图像合成和分析方面具有显著的潜力。然而,在临床应用之前,显然也需要对其进行改进、评估和监管。将 LLM 集成到临床工作流程中需要谨慎,以避免或至少减轻与错误诊断建议相关的风险。我们强调了在合成图像生成、AI 模型中的固有偏见和隐私问题方面的挑战,强调了多样化的训练数据集和强大的数据隐私措施的重要性。我们研究了监管格局,包括 2023 年美国关于人工智能的行政命令和 2024 年欧盟的人工智能法案,这些法案为医疗保健中的人工智能应用制定了标准。本文通过强调在利用生成式 AI 的同时保持医疗程序中的人为因素的必要性,倡导“机器在环”方法,为该领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6020/11269548/e3986d08fec2/41747_2024_485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验