文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于模拟退火和对分学习岛屿算法的医学图像分割。

Medical image segmentation based on simulated annealing and opposition-based learning island algorithm.

机构信息

School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, China.

School of Resource and Environmental Engineering, Jiangsu University of Technology, Changzhou, China.

出版信息

PLoS One. 2024 Jul 24;19(7):e0307278. doi: 10.1371/journal.pone.0307278. eCollection 2024.


DOI:10.1371/journal.pone.0307278
PMID:39047000
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11268707/
Abstract

With the development of society and changes in the human living environment, people are increasingly attaching importance to their own health. Regarding medical imaging examinations of certain parts of the body, the process of medical image segmentation has become extremely important. This paper presents a novel hybrid algorithm: SAOBL-IA, a fusion of the Simulated Annealing(SA), Opposition-based Learning(OBL)and Island Algorithm(IA). The Island Algorithm itself suffers from slow convergence speed and the tendency to get stuck in local optimum. To address these limitations, we introduce opposition-based learning to enhance the search range and avoid local optimum. Furthermore, we leverage the simulated annealing approach to accelerate the convergence of SAOBL-IA. Comparing the experimental results, it can be seen that SAOBL-IA has better comprehensive performance. Subsequently, the SAOBL-IA algorithm is utilized in conjunction with an optimized two-dimensional OTSU fusion segmentation technique for the purpose of medical image processing. This study proposes an application of image segmentation based on the SAOBL-IA. The segmentation of pixels around the background and target regions using the two-dimensional OTSU method faces challenges in terms of accuracy. To address this issue, an adaptive thresholding technique known as Adaptive Forking is employed for optimization. By determining the slope of the fork based on the misclassified pixel ratio, enhanced segmentation accuracy can be achieved. This improved approach is then integrated with the SAOBL-IA algorithm and applied to the segmentation of lung medical images. The experimental findings show that the amalgamation of SAOBL-IA with the adaptive two-dimensional OTSU segmentation approach, as proposed in this study, manifests superior segmentation speed and enhanced precision in the context of medical image segmentation.

摘要

随着社会的发展和人类生活环境的变化,人们越来越重视自身健康。对于身体某些部位的医学影像检查,医学图像分割的过程变得极其重要。本文提出了一种新颖的混合算法:SAOBL-IA,它融合了模拟退火(SA)、对向学习(OBL)和岛屿算法(IA)。岛屿算法本身存在收敛速度慢和容易陷入局部最优的问题。为了解决这些限制,我们引入了对向学习来增强搜索范围和避免局部最优。此外,我们利用模拟退火方法来加速 SAOBL-IA 的收敛。通过比较实验结果,可以看出 SAOBL-IA 具有更好的综合性能。随后,将 SAOBL-IA 算法与优化的二维 OTSU 融合分割技术结合起来应用于医学图像处理。本研究提出了一种基于 SAOBL-IA 的图像分割应用。使用二维 OTSU 方法对背景和目标区域周围的像素进行分割,在准确性方面存在挑战。为了解决这个问题,采用了一种称为自适应分叉的自适应阈值技术进行优化。通过根据错误分类像素的比例确定叉子的斜率,可以实现更高的分割准确性。然后,将这种改进的方法与 SAOBL-IA 算法结合,并应用于肺部医学图像的分割。实验结果表明,本文提出的将 SAOBL-IA 与自适应二维 OTSU 分割方法相结合的方法,在医学图像分割方面表现出了更快的分割速度和更高的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/30a708072b4c/pone.0307278.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/a8de4a4bdb46/pone.0307278.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/8329590d3f95/pone.0307278.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/45eb1c25578c/pone.0307278.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/fa23a7d329cb/pone.0307278.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/525e5fcb2350/pone.0307278.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/72dbbf52304a/pone.0307278.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/b2b7534e53a1/pone.0307278.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/41a66b120f67/pone.0307278.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/30a708072b4c/pone.0307278.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/a8de4a4bdb46/pone.0307278.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/8329590d3f95/pone.0307278.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/45eb1c25578c/pone.0307278.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/fa23a7d329cb/pone.0307278.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/525e5fcb2350/pone.0307278.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/72dbbf52304a/pone.0307278.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/b2b7534e53a1/pone.0307278.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/41a66b120f67/pone.0307278.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c003/11268707/30a708072b4c/pone.0307278.g009.jpg

相似文献

[1]
Medical image segmentation based on simulated annealing and opposition-based learning island algorithm.

PLoS One. 2024

[2]
Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm.

Comput Biol Med. 2022-11

[3]
An Improved Search and Rescue Algorithm for Global Optimization and Blood Cell Image Segmentation.

Diagnostics (Basel). 2023-4-15

[4]
Multi-Level Thresholding Image Segmentation Based on Improved Slime Mould Algorithm and Symmetric Cross-Entropy.

Entropy (Basel). 2023-1-16

[5]
Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI.

Diagnostics (Basel). 2023-3-1

[6]
Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation.

Math Biosci Eng. 2021-4-2

[7]
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images.

Comput Biol Med. 2024-12

[8]
Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation.

J Xray Sci Technol. 2022

[9]
Medical image segmentation approach based on hybrid adaptive differential evolution and crayfish optimizer.

Comput Biol Med. 2024-9

[10]
A hybrid technique for medical image segmentation.

J Biomed Biotechnol. 2012

本文引用的文献

[1]
Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review.

Evol Syst (Berl). 2022

[2]
Archimedes Optimizer: Theory, Analysis, Improvements, and Applications.

Arch Comput Methods Eng. 2023

[3]
Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection.

Appl Intell (Dordr). 2023

[4]
Human-Inspired Optimization Algorithms: Theoretical Foundations, Algorithms, Open-Research Issues and Application for Multi-Level Thresholding.

Arch Comput Methods Eng. 2022

[5]
A hybrid equilibrium optimizer algorithm for multi-level image segmentation.

Math Biosci Eng. 2021-5-27

[6]
A novel image encryption scheme based on quantum dynamical spinning and rotations.

PLoS One. 2018-11-19

[7]
Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

Comput Intell Neurosci. 2015

[8]
Whole-brain functional connectivity identification of functional dyspepsia.

PLoS One. 2013-6-17

[9]
The Max Roberts Operator is a Hueckel-Type Edge Detector.

IEEE Trans Pattern Anal Mach Intell. 1981-1

[10]
Optimization by simulated annealing.

Science. 1983-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索