Jiang Runchao, Lu Wenbin, Song Rui, Davidian Marie
North Carolina State University, Raleigh, USA.
J R Stat Soc Series B Stat Methodol. 2017 Sep;79(4):1165-1185. doi: 10.1111/rssb.12201. Epub 2016 Sep 2.
A treatment regime is a deterministic function that dictates personalized treatment based on patients' individual prognostic information. There is increasing interest in finding optimal treatment regimes, which determine treatment at one or more treatment decision points so as to maximize expected long-term clinical outcome, where larger outcomes are preferred. For chronic diseases such as cancer or HIV infection, survival time is often the outcome of interest, and the goal is to select treatment to maximize survival probability. We propose two nonparametric estimators for the survival function of patients following a given treatment regime involving one or more decisions, i.e., the so-called value. Based on data from a clinical or observational study, we estimate an optimal regime by maximizing these estimators for the value over a prespecified class of regimes. Because the value function is very jagged, we introduce kernel smoothing within the estimator to improve performance. Asymptotic properties of the proposed estimators of value functions are established under suitable regularity conditions, and simulations studies evaluate the finite-sample performance of the proposed regime estimators. The methods are illustrated by application to data from an AIDS clinical trial.
治疗方案是一种确定性函数,它根据患者的个体预后信息来规定个性化治疗。人们对寻找最优治疗方案的兴趣与日俱增,最优治疗方案在一个或多个治疗决策点确定治疗,以便使预期的长期临床结果最大化,其中更大的结果更可取。对于癌症或艾滋病毒感染等慢性病,生存时间通常是感兴趣的结果,目标是选择治疗方案以最大化生存概率。我们针对遵循涉及一个或多个决策(即所谓的价值)的给定治疗方案的患者的生存函数提出了两种非参数估计方法。基于临床或观察性研究的数据,我们通过在预先指定的方案类别上最大化这些价值估计量来估计最优方案。由于价值函数非常参差不齐,我们在估计量中引入核平滑以提高性能。在适当的正则性条件下建立了所提出的价值函数估计量的渐近性质,模拟研究评估了所提出的方案估计量的有限样本性能。通过应用于艾滋病临床试验的数据来说明这些方法。