通过将形式概念分析与卷积神经网络相结合提高医学图像分类的可解释性
Enhancing Interpretability in Medical Image Classification by Integrating Formal Concept Analysis with Convolutional Neural Networks.
作者信息
Khatri Minal, Yin Yanbin, Deogun Jitender
机构信息
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
出版信息
Biomimetics (Basel). 2024 Jul 10;9(7):421. doi: 10.3390/biomimetics9070421.
In this study, we present a novel approach to enhancing the interpretability of medical image classification by integrating formal concept analysis (FCA) with convolutional neural networks (CNNs). While CNNs are increasingly applied in medical diagnoses, understanding their decision-making remains a challenge. Although visualization techniques like saliency maps offer insights into CNNs' decision-making for individual images, they do not explicitly establish a relationship between the high-level features learned by CNNs and the class labels across entire dataset. To bridge this gap, we leverage the FCA framework as an image classification model, presenting a novel method for understanding the relationship between abstract features and class labels in medical imaging. Building on our previous work, which applied this method to the MNIST handwritten image dataset and demonstrated that the performance is comparable to CNNs, we extend our approach and evaluation to histopathological image datasets, including Warwick-QU and BreakHIS. Our results show that the FCA-based classifier offers comparable accuracy to deep neural classifiers while providing transparency into the classification process, an important factor in clinical decision-making.
在本研究中,我们提出了一种通过将形式概念分析(FCA)与卷积神经网络(CNN)相结合来提高医学图像分类可解释性的新方法。虽然CNN在医学诊断中的应用越来越广泛,但理解它们的决策过程仍然是一个挑战。尽管诸如显著性图之类的可视化技术能够为单个图像的CNN决策提供见解,但它们并未明确建立CNN学习的高级特征与整个数据集中类标签之间的关系。为了弥合这一差距,我们利用FCA框架作为图像分类模型,提出了一种理解医学成像中抽象特征与类标签之间关系的新方法。基于我们之前将此方法应用于MNIST手写图像数据集并证明其性能与CNN相当的工作,我们将方法和评估扩展到组织病理学图像数据集,包括Warwick-QU和BreakHIS。我们的结果表明,基于FCA的分类器在提供分类过程透明度的同时,具有与深度神经分类器相当的准确性,这是临床决策中的一个重要因素。
相似文献
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
J Pathol Inform. 2023-6-13
引用本文的文献
Biomimetics (Basel). 2024-10-9
本文引用的文献
Comput Methods Programs Biomed. 2023-10
Cancers (Basel). 2022-10-26
Neural Comput Appl. 2022
Cancers (Basel). 2019-12-12
Neural Comput. 2017-9