Suppr超能文献

用于临床应用中推进缺血性脑卒检测与分类的混合集成深度学习模型

Hybrid Ensemble Deep Learning Model for Advancing Ischemic Brain Stroke Detection and Classification in Clinical Application.

作者信息

Qasrawi Radwan, Qdaih Ibrahem, Daraghmeh Omar, Thwib Suliman, Vicuna Polo Stephanny, Atari Siham, Abu Al-Halawa Diala

机构信息

Department of Computer Science, Al-Quds University, Jerusalem P.O. Box 20002, Palestine.

Department of Computer Engineering, Istinye University, Istanbul 34010, Turkey.

出版信息

J Imaging. 2024 Jul 2;10(7):160. doi: 10.3390/jimaging10070160.

Abstract

Ischemic brain strokes are severe medical conditions that occur due to blockages in the brain's blood flow, often caused by blood clots or artery blockages. Early detection is crucial for effective treatment. This study aims to improve the detection and classification of ischemic brain strokes in clinical settings by introducing a new approach that integrates the stroke precision enhancement, ensemble deep learning, and intelligent lesion detection and segmentation models. The proposed hybrid model was trained and tested using a dataset of 10,000 computed tomography scans. A 25-fold cross-validation technique was employed, while the model's performance was evaluated using accuracy, precision, recall, and F1 score. The findings indicate significant improvements in accuracy for different stages of stroke images when enhanced using the SPEM model with contrast-limited adaptive histogram equalization set to 4. Specifically, accuracy showed significant improvement (from 0.876 to 0.933) for hyper-acute stroke images; from 0.881 to 0.948 for acute stroke images, from 0.927 to 0.974 for sub-acute stroke images, and from 0.928 to 0.982 for chronic stroke images. Thus, the study shows significant promise for the detection and classification of ischemic brain strokes. Further research is needed to validate its performance on larger datasets and enhance its integration into clinical settings.

摘要

缺血性脑中风是由于脑部血流受阻而发生的严重病症,通常由血凝块或动脉阻塞引起。早期检测对于有效治疗至关重要。本研究旨在通过引入一种整合中风精度增强、集成深度学习以及智能病变检测与分割模型的新方法,来改进临床环境中缺血性脑中风的检测和分类。所提出的混合模型使用包含10000份计算机断层扫描的数据集进行训练和测试。采用了25折交叉验证技术,同时使用准确率、精确率、召回率和F1分数来评估模型的性能。研究结果表明,当使用对比度受限自适应直方图均衡设置为4的SPEM模型进行增强时,中风图像不同阶段的准确率有显著提高。具体而言,超急性中风图像的准确率显著提高(从0.876提高到0.933);急性中风图像从0.881提高到0.948,亚急性中风图像从0.927提高到0.974,慢性中风图像从0.928提高到0.982。因此,该研究显示出在缺血性脑中风检测和分类方面具有显著前景。需要进一步研究以在更大的数据集上验证其性能,并加强其在临床环境中的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e6/11278187/e3aa346ddb95/jimaging-10-00160-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验