Vădineanu Serban, Pelt Daniël M, Dzyubachyk Oleh, Batenburg Kees Joost
Leiden Institute of Advanced Computer Science, Leiden University, 2311 EZ Leiden, The Netherlands.
The Division of Image Processing, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
J Imaging. 2024 Jul 17;10(7):172. doi: 10.3390/jimaging10070172.
Deep-learning algorithms for cell segmentation typically require large data sets with high-quality annotations to be trained with. However, the annotation cost for obtaining such sets may prove to be prohibitively expensive. Our work aims to reduce the time necessary to create high-quality annotations of cell images by using a relatively small well-annotated data set for training a convolutional neural network to upgrade lower-quality annotations, produced at lower annotation costs. We investigate the performance of our solution when upgrading the annotation quality for labels affected by three types of annotation error: omission, inclusion, and bias. We observe that our method can upgrade annotations affected by high error levels from 0.3 to 0.9 Dice similarity with the ground-truth annotations. We also show that a relatively small well-annotated set enlarged with samples with upgraded annotations can be used to train better-performing cell segmentation networks compared to training only on the well-annotated set. Moreover, we present a use case where our solution can be successfully employed to increase the quality of the predictions of a segmentation network trained on just 10 annotated samples.
用于细胞分割的深度学习算法通常需要使用带有高质量注释的大型数据集进行训练。然而,获取此类数据集的注释成本可能高得令人望而却步。我们的工作旨在通过使用一个相对较小的注释良好的数据集来训练卷积神经网络,以提升以较低注释成本生成的低质量注释,从而减少创建细胞图像高质量注释所需的时间。我们研究了在提升受三种注释错误(遗漏、包含和偏差)影响的标签的注释质量时,我们的解决方案的性能。我们观察到,我们的方法可以将受高错误水平影响的注释与真实注释的骰子相似度从0.3提升到0.9。我们还表明,与仅在注释良好的数据集上进行训练相比,一个用升级注释的样本扩充后的相对较小的注释良好的数据集可用于训练性能更好的细胞分割网络。此外,我们展示了一个用例,其中我们的解决方案可以成功用于提高仅在10个注释样本上训练的分割网络的预测质量。