Dieulesaint Alexandre, Chaix-Pluchery Odette, Weber Matthieu, Donatini Fabrice, Lacoste Ana, Consonni Vincent, Sarigiannidou Eirini
Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France.
Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, F-38000 Grenoble, France.
Nanomaterials (Basel). 2024 Jul 19;14(14):1225. doi: 10.3390/nano14141225.
The chemical bath deposition (CBD) process enables the deposition of ZnO nanowires (NWs) on various substrates with customizable morphology. However, the hydrogen-rich CBD environment introduces numerous hydrogen-related defects, unintentionally doping the ZnO NWs and increasing their electrical conductivity. The oxygen-based plasma treatment can modify the nature and amount of these defects, potentially tailoring the ZnO NW properties for specific applications. This study examines the impact of the average ion energy on the formation of oxygen vacancies (V) and hydrogen-related defects in ZnO NWs exposed to low-pressure oxygen plasma. Using X-ray photoelectron spectroscopy (XPS), 5 K cathodoluminescence (5K CL), and Raman spectroscopy, a comprehensive understanding of the effect of the oxygen ion energy on the formation of defects and defect complexes was established. A series of associative and dissociative reactions indicated that controlling plasma process parameters, particularly ion energy, is crucial. The XPS data suggested that increasing the ion energy could enhance Fermi level pinning by increasing the amount of V and favoring the hydroxyl group adsorption, expanding the depletion region of charge carriers. The 5K CL and Raman spectroscopy further demonstrated the potential to adjust the ZnO NW physical properties by varying the oxygen ion energy, affecting various donor- and acceptor-type defect complexes. This study highlights the ability to tune the ZnO NW properties at low temperature by modifying plasma process parameters, offering new possibilities for a wide variety of nanoscale engineering devices fabricated on flexible and/or transparent substrates.
化学浴沉积(CBD)工艺能够在各种衬底上沉积具有可定制形态的氧化锌纳米线(NWs)。然而,富含氢的CBD环境会引入大量与氢相关的缺陷,无意中对氧化锌纳米线进行了掺杂并提高了其电导率。基于氧的等离子体处理可以改变这些缺陷的性质和数量,有可能针对特定应用定制氧化锌纳米线的性能。本研究考察了平均离子能量对暴露于低压氧等离子体的氧化锌纳米线中氧空位(V)和与氢相关缺陷形成的影响。通过X射线光电子能谱(XPS)、5K阴极发光(5K CL)和拉曼光谱,全面了解了氧离子能量对缺陷和缺陷复合体形成的影响。一系列缔合和解离反应表明,控制等离子体工艺参数,特别是离子能量,至关重要。XPS数据表明,增加离子能量可通过增加V的数量和促进羟基吸附来增强费米能级钉扎,扩大电荷载流子的耗尽区。5K CL和拉曼光谱进一步证明了通过改变氧离子能量来调整氧化锌纳米线物理性能的潜力,这会影响各种施主型和受主型缺陷复合体。本研究强调了通过修改等离子体工艺参数在低温下调整氧化锌纳米线性能的能力,为在柔性和/或透明衬底上制造的各种纳米级工程器件提供了新的可能性。