Suppr超能文献

基于矢量量化变分自编码器(VQ-VAE)的光学相干断层扫描血管造影(OCTA)中的异常检测

Anomaly Detection in Optical Coherence Tomography Angiography (OCTA) with a Vector-Quantized Variational Auto-Encoder (VQ-VAE).

作者信息

Jebril Hana, Esengönül Meltem, Bogunović Hrvoje

机构信息

Lab for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University of Vienna, 1090 Vienna, Austria.

Christian Doppler Lab for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, 1090 Vienna, Austria.

出版信息

Bioengineering (Basel). 2024 Jul 5;11(7):682. doi: 10.3390/bioengineering11070682.

Abstract

Optical coherence tomography angiography (OCTA) provides detailed information on retinal blood flow and perfusion. Abnormal retinal perfusion indicates possible ocular or systemic disease. We propose a deep learning-based anomaly detection model to identify such anomalies in OCTA. It utilizes two deep learning approaches. First, a representation learning with a Vector-Quantized Variational Auto-Encoder (VQ-VAE) followed by Auto-Regressive (AR) modeling. Second, it exploits epistemic uncertainty estimates from Bayesian U-Net employed to segment the vasculature on OCTA en face images. Evaluation on two large public datasets, DRAC and OCTA-500, demonstrates effective anomaly detection (an AUROC of 0.92 for the DRAC and an AUROC of 0.75 for the OCTA-500) and localization (a mean Dice score of 0.61 for the DRAC) on this challenging task. To our knowledge, this is the first work that addresses anomaly detection in OCTA.

摘要

光学相干断层扫描血管造影(OCTA)可提供有关视网膜血流和灌注的详细信息。视网膜灌注异常表明可能存在眼部或全身性疾病。我们提出了一种基于深度学习的异常检测模型,以识别OCTA中的此类异常。它利用了两种深度学习方法。首先,通过矢量量化变分自编码器(VQ-VAE)进行表征学习,然后进行自回归(AR)建模。其次,它利用贝叶斯U-Net的认知不确定性估计来分割OCTA正面图像上的脉管系统。在两个大型公共数据集DRAC和OCTA-500上进行的评估表明,在这项具有挑战性的任务中,该模型具有有效的异常检测能力(DRAC的AUROC为0.92,OCTA-500的AUROC为0.75)和定位能力(DRAC的平均Dice评分为0.61)。据我们所知,这是第一项解决OCTA中异常检测问题的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eec/11273395/199d3ceaacf4/bioengineering-11-00682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验