文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

镧系离子和三唑配体对分子性质、光谱和药理活性的影响。

Effect of Lanthanide Ions and Triazole Ligands on the Molecular Properties, Spectroscopy and Pharmacological Activity.

机构信息

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.

Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg 620012, Russia.

出版信息

Int J Mol Sci. 2024 Jul 21;25(14):7964. doi: 10.3390/ijms25147964.


DOI:10.3390/ijms25147964
PMID:39063204
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11276792/
Abstract

The effect of La, Ce, Pr and Nd ions on four Ln(ligand) complexes and at three DFT levels of calculation was analyzed. Four ligands were chosen, three of which were based on the 1,2,3-triazole ring. The DFT methods used were B3LYP, CAM-B3LYP and M06-2X. The relationships established were between the geometric parameters, atomic charges, HOMO-LUMO energies and other molecular properties. These comparisons and trends will facilitate the synthesis of new complexes by selecting the ligand and lanthanide ion best suited to the desired property of the complex. The experimental IR and Raman spectra of Ln(2b') complexes where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er ions have been recorded and compared to know the effect of the lanthanide ion on the complex. The hydration in these complexes was also analyzed. Additionally, the effect of the type of coordination center on the ability of an Ln(ligand) complex to participate in electron exchange and hydrogen transfer was investigated using two in vitro model systems-DPPH and ABTS.

摘要

分析了 La、Ce、Pr 和 Nd 离子对四种 Ln(配体)配合物的影响,并在三个 DFT 计算水平上进行了分析。选择了四种配体,其中三种基于 1,2,3-三唑环。使用的 DFT 方法是 B3LYP、CAM-B3LYP 和 M06-2X。建立了几何参数、原子电荷、HOMO-LUMO 能量和其他分子性质之间的关系。这些比较和趋势将有助于通过选择最适合所需配合物性质的配体和镧系离子来合成新的配合物。记录了 Ln(2b')配合物的实验 IR 和 Raman 光谱,其中 Ln = La、Ce、Pr、Nd、Sm、Gd、Dy、Ho 和 Er 离子,并将其与已知的镧系离子对配合物的影响进行了比较。还分析了这些配合物中的水合作用。此外,使用两种体外模型系统 DPPH 和 ABTS 研究了配位中心类型对 Ln(配体)配合物参与电子交换和氢转移能力的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/bd5e7ba8a010/ijms-25-07964-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/aa1378525428/ijms-25-07964-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/ec36360e291b/ijms-25-07964-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/5225a7b73e9c/ijms-25-07964-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/13989bfc1a48/ijms-25-07964-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/eef791f01437/ijms-25-07964-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/0961e6d680e3/ijms-25-07964-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/02cf04b7f551/ijms-25-07964-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/45cbd52384a6/ijms-25-07964-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/e2419cd46fe3/ijms-25-07964-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/bd5e7ba8a010/ijms-25-07964-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/aa1378525428/ijms-25-07964-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/ec36360e291b/ijms-25-07964-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/5225a7b73e9c/ijms-25-07964-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/13989bfc1a48/ijms-25-07964-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/eef791f01437/ijms-25-07964-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/0961e6d680e3/ijms-25-07964-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/02cf04b7f551/ijms-25-07964-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/45cbd52384a6/ijms-25-07964-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/e2419cd46fe3/ijms-25-07964-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c3/11276792/bd5e7ba8a010/ijms-25-07964-g010.jpg

相似文献

[1]
Effect of Lanthanide Ions and Triazole Ligands on the Molecular Properties, Spectroscopy and Pharmacological Activity.

Int J Mol Sci. 2024-7-21

[2]
DNA Intercalating Near-Infrared Luminescent Lanthanide Complexes Containing Dipyrido[3,2-:2',3'-]phenazine (dppz) Ligands: Synthesis, Crystal Structures, Stability, Luminescence Properties and CT-DNA Interaction.

Molecules. 2020-11-13

[3]
Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.

Inorg Chem. 2012-12-11

[4]
Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

Dalton Trans. 2011-12-12

[5]
Syntheses, structures, and magnetic properties of diphenoxo-bridged Cu(II)Ln(III) and Ni(II)(low-spin)Ln(III) compounds derived from a compartmental ligand (Ln = Ce-Yb).

Inorg Chem. 2010-10-4

[6]
Molecular spectrum of lanthanide complexes with 2,3-dichlorobenzoic acid and 2,2-bipyridine.

Spectrochim Acta A Mol Biomol Spectrosc. 2013-12-18

[7]
Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand.

Spectrochim Acta A Mol Biomol Spectrosc. 2011-7-1

[8]
Asymmetric Dinuclear Lanthanide(III) Complexes from the Use of a Ligand Derived from 2-Acetylpyridine and Picolinoylhydrazide: Synthetic, Structural and Magnetic Studies.

Molecules. 2020-7-10

[9]
Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with α-hydroxyisobutyric acid.

Inorg Chem. 2012-12-5

[10]
Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes.

Spectrochim Acta A Mol Biomol Spectrosc. 2011-6-23

引用本文的文献

[1]
The Spectroscopic Characterization and Photophysical Properties of a Hydrated Lanthanum Ion Complex with a Triazole Ligand by Several DFT Methods.

Molecules. 2025-8-18

本文引用的文献

[1]
Study of the Molecular Architectures of 2-(4-Chlorophenyl)-5-(pyrrolidin-1-yl)-2-1,2,3-triazole-4-carboxylic Acid Using Their Vibrational Spectra, Quantum Chemical Calculations and Molecular Docking with MMP-2 Receptor.

Pharmaceutics. 2023-11-27

[2]
The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids.

Arch Pharm (Weinheim). 2024-3

[3]
Structural Study of a La(III) Complex of a 1,2,3-Triazole Ligand with Antioxidant Activity.

Antioxidants (Basel). 2023-10-17

[4]
Innovative lanthanide complexes: Shaping the future of cancer/ tumor chemotherapy.

J Trace Elem Med Biol. 2023-12

[5]
Combined NMR Spectroscopy and Quantum-Chemical Calculations in Fluorescent 1,2,3-Triazole-4-carboxylic Acids Fine Structures Analysis.

Int J Mol Sci. 2023-5-18

[6]
Applications of rare earth elements in cancer: Evidence mapping and scientometric analysis.

Front Med (Lausanne). 2022-8-10

[7]
1,2,3-Triazole Derivatives with Anti-breast Cancer Potential.

Curr Top Med Chem. 2022

[8]
1,2,3-Triazole hybrids as anticancer agents: A review.

Arch Pharm (Weinheim). 2022-1

[9]
Recent Progress in 1H-1,2,3-triazoles as Potential Antifungal Agents.

Curr Top Med Chem. 2021

[10]
Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines.

Photodiagnosis Photodyn Ther. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索