Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
Eye (Lond). 2024 Nov;38(16):3101-3107. doi: 10.1038/s41433-024-03228-5. Epub 2024 Jul 27.
OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) platform in the form of an applet that facilitates the screening and management of strabismus on any mobile device. METHODS: The Visual Transformer (VIT_16_224) was developed using primary gaze photos from two datasets covering different ages. The AI model was evaluated by 5-fold cross-validation set and tested on an independent test set. The diagnostic performance of the AI model was assessed by calculating the Accuracy, Precision, Specificity, Sensitivity, F1-Score and Area Under the Curve (AUC). RESULTS: A total of 6194 photos with corneal light-reflection (with 2938 Exotropia, 1415 Esotropia, 739 Vertical Deviation and 1562 Orthotropy) were included. In the internal validation set, the AI model achieved an Accuracy of 0.980, Precision of 0.941, Specificity of 0.979, Sensitivity of 0.958, F1-Score of 0.951 and AUC of 0.994. In the independent test set, the AI model achieved an Accuracy of 0.967, Precision of 0.980, Specificity of 0.970, Sensitivity of 0.960, F1-Score of 0.975 and AUC of 0.993. CONCLUSIONS: Our study presents an advanced AI model for strabismus screening which integrates electronic archives for comprehensive patient histories. Additionally, it includes a patient-physician interaction module for streamlined communication. This innovative platform offers a complete solution for strabismus care, from screening to long-term follow-up, advancing ophthalmology through AI technology for improved patient outcomes and eye care quality.
目的:鉴于斜视的发病率不断上升及其对视功能的潜在危害,我们迫切需要快速、准确的筛查方法。本研究旨在开发一种人工智能(AI)小程序平台,以便在任何移动设备上进行斜视筛查和管理。
方法:使用来自两个数据集的主视照片开发了视觉转换器(VIT_16_224),这些数据集涵盖了不同年龄段。通过 5 折交叉验证集评估 AI 模型,并在独立测试集上进行测试。通过计算准确率、精确率、特异性、敏感度、F1 分数和曲线下面积(AUC)来评估 AI 模型的诊断性能。
结果:共纳入 6194 张带有角膜光反射的照片(外斜视 2938 张,内斜视 1415 张,垂直斜视 739 张,正位眼 1562 张)。在内部验证集中,AI 模型的准确率为 0.980,精确率为 0.941,特异性为 0.979,敏感度为 0.958,F1 分数为 0.951,AUC 为 0.994。在独立测试集中,AI 模型的准确率为 0.967,精确率为 0.980,特异性为 0.970,敏感度为 0.960,F1 分数为 0.975,AUC 为 0.993。
结论:本研究提出了一种用于斜视筛查的先进 AI 模型,该模型集成了电子档案以全面记录患者病史。此外,它还包括一个医患互动模块,以实现流畅的沟通。这个创新平台为斜视治疗提供了一个完整的解决方案,从筛查到长期随访,通过人工智能技术为患者提供更好的治疗效果和眼科护理质量。
Cochrane Database Syst Rev. 2017-11-6
Cochrane Database Syst Rev. 2023-11-15
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2024-10-17
Cochrane Database Syst Rev. 2017-3-2
Cochrane Database Syst Rev. 2022-2-7
Cochrane Database Syst Rev. 2023-3-14
Biosensors (Basel). 2025-2-14
Exp Biol Med (Maywood). 2024-11-25
Curr Opin Ophthalmol. 2022-9-1
Cochrane Database Syst Rev. 2021-9-13
Int J Med Inform. 2021-9
Transl Vis Sci Technol. 2021-6-1
BMC Ophthalmol. 2021-3-25
Transl Vis Sci Technol. 2021-1