文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种利用角膜反光照片进行斜视诊断和手术规划的人工智能平台。

An artificial intelligence platform for the diagnosis and surgical planning of strabismus using corneal light-reflection photos.

作者信息

Mao Keli, Yang Yahan, Guo Chong, Zhu Yi, Chen Chuan, Chen Jingchang, Liu Li, Chen Lifei, Mo Zijun, Lin Bingsen, Zhang Xinliang, Li Sijin, Lin Xiaoming, Lin Haotian

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Ann Transl Med. 2021 Mar;9(5):374. doi: 10.21037/atm-20-5442.


DOI:10.21037/atm-20-5442
PMID:33842595
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8033395/
Abstract

BACKGROUND: Strabismus affects approximately 0.8-6.8% of the world's population and can lead to abnormal visual function. However, Strabismus screening and measurement are laborious and require professional training. This study aimed to develop an artificial intelligence (AI) platform based on corneal light-reflection photos for the diagnosis of strabismus and to provide preoperative advice. METHODS: An AI platform consisting of three deep learning (DL) systems for strabismus diagnosis, angle evaluation, and operation plannings based on corneal light-reflection photos was trained and retrospectively validated using a retrospective development data set obtained between Jan 1, 2014, and Dec 31, 2018. Corneal light-reflection photos were collected to train the DL systems for strabismus screening and deviation evaluations in the horizontal strabismus while concatenated images (each composed of two photos representing different gaze states) were procured to train the DL system for operative advice regarding exotropia. The AI platform was further prospectively validated using a prospective development data set captured between Sep 1, 2019, and Jun 10, 2020. RESULTS: In total, 5,797 and 571 photos were included in the retrospective and prospectively development data sets, respectively. In the retrospective test sets, the screening system detected strabismus with a sensitivity of 99.1% [95% confidence interval (95% CI), 98.1-99.7%], a specificity of 98.3% (95% CI, 94.6-99.5%), and an AUC of 0.998 (95% CI, 0.993-1.000, P<0.001). Compared to the angle measured by the perimeter arc, the deviation evaluation system achieved a level of accuracy of ±6.6º (95% LoA) with a small bias of 1.0º. Compared to the real design, the operation advice system provided advice regarding the target angle within ±5.5º (95% LoA). Regarding strabismus in the prospective test set, the AUC was 0.980. The platform achieved a level of accuracy of ±7.0º (95% LoA) in the deviation evaluation and ±6.1º (95% LoA) in the target angle suggestion. CONCLUSIONS: The AI platform based on corneal light-reflection photos can provide reliable references for strabismus diagnosis, angle evaluation, and surgical plannings.

摘要

背景:斜视影响着全球约0.8%-6.8%的人口,并可能导致视觉功能异常。然而,斜视的筛查和测量工作繁重,且需要专业培训。本研究旨在开发一个基于角膜反光照片的人工智能(AI)平台,用于斜视诊断并提供术前建议。 方法:使用2014年1月1日至2018年12月31日期间获取的回顾性开发数据集,对一个由三个深度学习(DL)系统组成的AI平台进行训练和回顾性验证,这三个系统分别用于基于角膜反光照片的斜视诊断、角度评估和手术规划。收集角膜反光照片以训练DL系统用于水平斜视的筛查和斜视度评估,同时获取拼接图像(每张由代表不同注视状态的两张照片组成)来训练DL系统以提供外斜视手术建议。使用2019年9月1日至2020年6月10日期间获取的前瞻性开发数据集对AI平台进行进一步的前瞻性验证。 结果:回顾性和前瞻性开发数据集中分别纳入了5797张和571张照片。在回顾性测试集中,筛查系统检测斜视的灵敏度为99.1%[95%置信区间(95%CI),98.1%-99.7%],特异度为98.3%(95%CI,94.6%-99.5%),曲线下面积(AUC)为0.998(95%CI,0.993-1.000,P<0.001)。与弧形视野计测量的角度相比,斜视度评估系统的准确度达到±6.6°(95%一致性界限),偏差较小,为1.0°。与实际设计相比,手术建议系统给出的目标角度建议在±5.5°(95%一致性界限)范围内。在前瞻性测试集中,斜视诊断的AUC为0.980。该平台在斜视度评估中的准确度达到±7.0°(95%一致性界限),在目标角度建议方面达到±6.1°(95%一致性界限)。 结论:基于角膜反光照片的AI平台可为斜视诊断、角度评估和手术规划提供可靠参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/c0978b09a52b/atm-09-05-374-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/0a53d92ecb1f/atm-09-05-374-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/5d9b3d085440/atm-09-05-374-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/498e77b874ae/atm-09-05-374-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/3456f3a022d6/atm-09-05-374-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/a2361fcc4af6/atm-09-05-374-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/c0978b09a52b/atm-09-05-374-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/0a53d92ecb1f/atm-09-05-374-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/5d9b3d085440/atm-09-05-374-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/498e77b874ae/atm-09-05-374-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/3456f3a022d6/atm-09-05-374-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/a2361fcc4af6/atm-09-05-374-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1079/8033395/c0978b09a52b/atm-09-05-374-f6.jpg

相似文献

[1]
An artificial intelligence platform for the diagnosis and surgical planning of strabismus using corneal light-reflection photos.

Ann Transl Med. 2021-3

[2]
An artificial intelligence platform for the screening and managing of strabismus.

Eye (Lond). 2024-11

[3]
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.

Hum Reprod. 2020-4-28

[4]
Artificial Intelligence for Early Detection of Pediatric Eye Diseases Using Mobile Photos.

JAMA Netw Open. 2024-8-1

[5]
Detection of Referable Horizontal Strabismus in Children's Primary Gaze Photographs Using Deep Learning.

Transl Vis Sci Technol. 2021-1

[6]
[Application of Deep Learning Algorithm in the Grading Assessment of Corneal Fluorescein Staining].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2023-9

[7]
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.

JAMA Netw Open. 2020-10-1

[8]
Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.

Clin Exp Ophthalmol. 2018-11-15

[9]
[Systemic bias in the photographic assessment of the first purkinje image].

Klin Monbl Augenheilkd. 2006-4

[10]
Measurement of strabismic angle using the distance Krimsky test.

Korean J Ophthalmol. 2013-8

引用本文的文献

[1]
Clinical research on the application of AI-assisted computing systems in the treatment of intermittent exotropia.

BMC Ophthalmol. 2025-7-28

[2]
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.

Med Hypothesis Discov Innov Ophthalmol. 2025-5-10

[3]
Artificial Intelligence in Optometry: Current and Future Perspectives.

Clin Optom (Auckl). 2025-3-12

[4]
Automated strabismus detection and classification using deep learning analysis of facial images.

Sci Rep. 2025-1-31

[5]
Integrating artificial intelligence in strabismus management: current research landscape and future directions.

Exp Biol Med (Maywood). 2024-11-25

[6]
A Review of the Utility and Limitations of Artificial Intelligence in Retinal Disorders and Pediatric Ophthalmology.

Cureus. 2024-10-8

[7]
A retinal detachment based strabismus detection through FEDCNN.

Sci Rep. 2024-10-6

[8]
Plication or resection combined with antagonist recession in horizontal strabismus.

Med Hypothesis Discov Innov Ophthalmol. 2024-8-14

[9]
An artificial intelligence platform for the screening and managing of strabismus.

Eye (Lond). 2024-11

[10]
Artificial intelligence-aided diagnosis and treatment in the field of optometry.

Int J Ophthalmol. 2023-9-18

本文引用的文献

[1]
Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images.

Commun Biol. 2020-1-8

[2]
Comparison of surgical outcomes between bilateral recession and unilateral recession-resection in moderate-angle intermittent exotropia.

J AAPOS. 2019-4

[3]
Quantitative measurement of horizontal strabismus with digital photography.

J AAPOS. 2019-2

[4]
Infrared photographs with a selective wavelength filter to diagnose small-angle esotropia in young children.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[5]
The practical implementation of artificial intelligence technologies in medicine.

Nat Med. 2019-1-7

[6]
A comparison of surgical outcomes between pre-and full-term patients with exotropia.

PLoS One. 2018-12-7

[7]
Bilateral lateral rectus recession versus unilateral recession/resection for basic intermittent exotropia.

Medwave. 2018-10-29

[8]
Artificial intelligence and deep learning in ophthalmology.

Br J Ophthalmol. 2018-10-25

[9]
Medical Image Analysis using Convolutional Neural Networks: A Review.

J Med Syst. 2018-10-8

[10]
A Randomized Trial Comparing Bilateral Lateral Rectus Recession versus Unilateral Recess and Resect for Basic-Type Intermittent Exotropia.

Ophthalmology. 2018-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索