Nishioka Noriko, Fujima Noriyuki, Tsuneta Satonori, Yoshikawa Masato, Kimura Rina, Sakamoto Keita, Kato Fumi, Miyata Haruka, Kikuchi Hiroshi, Matsumoto Ryuji, Abe Takashige, Kwon Jihun, Yoneyama Masami, Kudo Kohsuke
Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 060-8648, Japan.
Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan.
Eur J Radiol Open. 2024 Jul 5;13:100588. doi: 10.1016/j.ejro.2024.100588. eCollection 2024 Dec.
To evaluate the utility of model-based deep learning reconstruction in prostate diffusion-weighted imaging (DWI).
This retrospective study evaluated two prostate diffusion-weighted imaging (DWI) methods: deep learning reconstruction (DL-DWI) and traditional parallel imaging (PI-DWI). We examined 32 patients with radiologically diagnosed and histologically confirmed prostate cancer (PCa) lesions ≥10 mm. Image quality was evaluated both qualitatively (for overall quality, prostate conspicuity, and lesion conspicuity) and quantitatively, using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) for prostate tissue.
In the qualitative evaluation, DL-DWI scored significantly higher than PI-DWI for all three parameters (p<0.0001). In the quantitative analysis, DL-DWI showed significantly higher SNR and CNR values compared to PI-DWI (p<0.0001). Both the prostate tissue and the lesions exhibited significantly higher ADC values in DL-DWI compared to PI-DWI (p<0.0001, p=0.0014, respectively).
Model-based DL reconstruction enhanced both qualitative and quantitative aspects of image quality in prostate DWI. However, this study did not include comparisons with other DL-based methods, which is a limitation that warrants future research.
评估基于模型的深度学习重建在前列腺扩散加权成像(DWI)中的效用。
这项回顾性研究评估了两种前列腺扩散加权成像(DWI)方法:深度学习重建(DL-DWI)和传统并行成像(PI-DWI)。我们检查了32例经放射学诊断且组织学证实有≥10毫米前列腺癌(PCa)病变的患者。使用前列腺组织的信噪比(SNR)、对比噪声比(CNR)和表观扩散系数(ADC),对图像质量进行了定性(整体质量、前列腺清晰度和病变清晰度)和定量评估。
在定性评估中,DL-DWI在所有三个参数上的得分均显著高于PI-DWI(p<0.0001)。在定量分析中,与PI-DWI相比,DL-DWI的SNR和CNR值显著更高(p<0.0001)。与PI-DWI相比,DL-DWI中的前列腺组织和病变均表现出显著更高的ADC值(分别为p<0.0001,p=0.0014)。
基于模型的DL重建增强了前列腺DWI图像质量的定性和定量方面。然而,本研究未包括与其他基于DL的方法的比较,这是一个需要未来研究的局限性。