Suppr超能文献

基于模型的深度学习重建在头颈部扩散加权成像中改善图像质量的评估。

Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck.

机构信息

Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, 060-8638, Japan.

Faculty of Dental Medicine Department of Radiology, Hokkaido University, N13 W7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan.

出版信息

MAGMA. 2024 Jul;37(3):439-447. doi: 10.1007/s10334-023-01129-4. Epub 2023 Nov 21.

Abstract

OBJECTIVES

To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI).

MATERIALS AND METHODS

We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle.

RESULTS

Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items (p < 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items (p = 0.002 ~ p < 0.001).

DISCUSSION

DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.

摘要

目的

探讨基于模型的深度学习(DL)图像重建在头颈部弥散加权成像(DWI)中的应用价值。

材料与方法

我们回顾性分析了 41 例头颈部 DWI 患者的病例。25 例 DWI 显示未治疗病变。我们分别使用深度学习(DL)和常规并行成像(PI)重建进行 DWI 分析的定性和定量评估。定性评估方面,我们根据 5 分制系统评估整体图像质量、软组织对比度、伪影程度和病变对比度。在定量评估中,我们测量了双侧腮腺、颌下腺、后肌和病变的信噪比(SNR)。然后计算病变与相邻肌肉之间的对比噪声比(CNR)。

结果

PI 与 DL 重建的 DWI 在所有评估项目上的定性分析均存在显著差异(p<0.001)。在定量分析中,PI 与 DL 重建的 DWI 在所有评估项目上的 SNR 和 CNR 均存在显著差异(p=0.002~p<0.001)。

讨论

基于模型的深度学习图像重建技术可有效提供头颈部 DWI 的充足图像质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验