Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo, 060-8638, Japan.
Faculty of Dental Medicine Department of Radiology, Hokkaido University, N13 W7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan.
MAGMA. 2024 Jul;37(3):439-447. doi: 10.1007/s10334-023-01129-4. Epub 2023 Nov 21.
To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI).
We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle.
Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items (p < 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items (p = 0.002 ~ p < 0.001).
DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.
探讨基于模型的深度学习(DL)图像重建在头颈部弥散加权成像(DWI)中的应用价值。
我们回顾性分析了 41 例头颈部 DWI 患者的病例。25 例 DWI 显示未治疗病变。我们分别使用深度学习(DL)和常规并行成像(PI)重建进行 DWI 分析的定性和定量评估。定性评估方面,我们根据 5 分制系统评估整体图像质量、软组织对比度、伪影程度和病变对比度。在定量评估中,我们测量了双侧腮腺、颌下腺、后肌和病变的信噪比(SNR)。然后计算病变与相邻肌肉之间的对比噪声比(CNR)。
PI 与 DL 重建的 DWI 在所有评估项目上的定性分析均存在显著差异(p<0.001)。在定量分析中,PI 与 DL 重建的 DWI 在所有评估项目上的 SNR 和 CNR 均存在显著差异(p=0.002~p<0.001)。
基于模型的深度学习图像重建技术可有效提供头颈部 DWI 的充足图像质量。