Suppr超能文献

用于准确识别可电击治疗的危及生命的心律失常的二维卷积神经网络-门控循环单元模型的高级集成:一种深度学习方法

Advanced integration of 2DCNN-GRU model for accurate identification of shockable life-threatening cardiac arrhythmias: a deep learning approach.

作者信息

Ba Mahel Abduljabbar S, Cao Shenghong, Zhang Kaixuan, Chelloug Samia Allaoua, Alnashwan Rana, Muthanna Mohammed Saleh Ali

机构信息

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

Front Physiol. 2024 Jul 12;15:1429161. doi: 10.3389/fphys.2024.1429161. eCollection 2024.

Abstract

Cardiovascular diseases remain one of the main threats to human health, significantly affecting the quality and life expectancy. Effective and prompt recognition of these diseases is crucial. This research aims to develop an effective novel hybrid method for automatically detecting dangerous arrhythmias based on cardiac patients' short electrocardiogram (ECG) fragments. This study suggests using a continuous wavelet transform (CWT) to convert ECG signals into images (scalograms) and examining the task of categorizing short 2-s segments of ECG signals into four groups of dangerous arrhythmias that are shockable, including ventricular flutter (C1), ventricular fibrillation (C2), ventricular tachycardia torsade de pointes (C3), and high-rate ventricular tachycardia (C4). We propose developing a novel hybrid neural network with a deep learning architecture to classify dangerous arrhythmias. This work utilizes actual electrocardiogram (ECG) data obtained from the PhysioNet database, alongside artificially generated ECG data produced by the Synthetic Minority Over-sampling Technique (SMOTE) approach, to address the issue of imbalanced class distribution for obtaining an accuracy-trained model. Experimental results demonstrate that the proposed approach achieves high accuracy, sensitivity, specificity, precision, and an F1-score of 97.75%, 97.75%, 99.25%, 97.75%, and 97.75%, respectively, in classifying all the four shockable classes of arrhythmias and are superior to traditional methods. Our work possesses significant clinical value in real-life scenarios since it has the potential to significantly enhance the diagnosis and treatment of life-threatening arrhythmias in individuals with cardiac disease. Furthermore, our model also has demonstrated adaptability and generality for two other datasets.

摘要

心血管疾病仍然是对人类健康的主要威胁之一,严重影响生活质量和预期寿命。有效且及时地识别这些疾病至关重要。本研究旨在开发一种有效的新型混合方法,用于基于心脏病患者的短心电图(ECG)片段自动检测危险心律失常。本研究建议使用连续小波变换(CWT)将ECG信号转换为图像(小波尺度图),并研究将ECG信号的2秒短片段分类为四类可电击的危险心律失常的任务,包括心室扑动(C1)、心室颤动(C2)、尖端扭转型室性心动过速(C3)和高频率室性心动过速(C4)。我们建议开发一种具有深度学习架构的新型混合神经网络来对危险心律失常进行分类。这项工作利用从PhysioNet数据库获得的实际心电图(ECG)数据,以及由合成少数过采样技术(SMOTE)方法生成的人工ECG数据,来解决类别分布不均衡的问题,以获得一个经过精度训练的模型。实验结果表明,所提出的方法在对所有四类可电击心律失常进行分类时,分别实现了97.75%、97.75%、99.25%、97.75%和97.75%的高精度、灵敏度、特异性、精确率和F1分数,并且优于传统方法。我们的工作在现实场景中具有重要的临床价值,因为它有可能显著提高对心脏病患者危及生命的心律失常的诊断和治疗水平。此外,我们的模型还在另外两个数据集上展示了适应性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e914/11272599/dc31428ad1ac/fphys-15-1429161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验