Suppr超能文献

结构-功能耦合揭示了阿尔茨海默病中大脑层次结构的功能障碍:一项多中心研究。

Structure-function coupling reveals the brain hierarchical structure dysfunction in Alzheimer's disease: A multicenter study.

机构信息

Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.

Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.

出版信息

Alzheimers Dement. 2024 Sep;20(9):6305-6315. doi: 10.1002/alz.14123. Epub 2024 Jul 28.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive decline. To date, the specific dysfunction in the brain's hierarchical structure in AD remains unclear.

METHODS

We introduced the structural decoupling index (SDI), based on a multi-site data set comprising functional and diffusion-weighted magnetic resonance imaging data from 793 subjects, to assess their brain hierarchy.

RESULTS

Compared to normal controls (NCs), individuals with AD exhibited increased SDI within the posterior superior temporal sulcus, insular gyrus, precuneus, hippocampus, amygdala, postcentral gyrus, and cingulate gyrus; meanwhile, the patients with AD demonstrated decreased SDI in the frontal lobe. The SDI in those regions also showed a significant correlation with cognitive ability. Moreover, the SDI was a robust AD neuroimaging biomarker capable of accurately distinguishing diagnostic status (area under the curve [AUC] = 0.86).

DISCUSSION

Our findings revealed the dysfunction of the brain's hierarchical structure in AD. Furthermore, the SDI could serve as a promising neuroimaging biomarker for AD.

HIGHLIGHTS

This study utilized multi-center, multi-modal data from East Asian populations. We found an increased spatial gradient of the structure decoupling index (SDI) from sensory-motor to higher-order cognitive regions. Changes in SDI are associated with energy metabolism and mitochondria. SDI can identify Alzheimer's disease (AD) and further uncover the disease mechanisms of AD.

摘要

背景

阿尔茨海默病(AD)是一种以认知能力下降为特征的神经退行性疾病。迄今为止,AD 患者大脑层级结构中的特定功能障碍仍不清楚。

方法

我们引入了结构解耦指数(SDI),基于包含来自 793 名受试者的功能和弥散加权磁共振成像数据的多站点数据集,来评估他们的大脑层级结构。

结果

与正常对照组(NC)相比,AD 个体在颞上后回、岛叶、楔前叶、海马体、杏仁核、中央后回和扣带回中表现出 SDI 的增加;而在额叶中则表现出 SDI 的降低。这些区域的 SDI 与认知能力也有显著相关性。此外,SDI 是一种强大的 AD 神经影像学生物标志物,能够准确区分诊断状态(曲线下面积 [AUC] = 0.86)。

讨论

我们的研究结果揭示了 AD 患者大脑层级结构的功能障碍。此外,SDI 可以作为 AD 的一种有前途的神经影像学生物标志物。

重点

本研究利用了东亚人群的多中心、多模态数据。我们发现结构解耦指数(SDI)的空间梯度从感觉运动区到更高阶的认知区增加。SDI 的变化与能量代谢和线粒体有关。SDI 可以识别阿尔茨海默病(AD),并进一步揭示 AD 的疾病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e38/11497717/40bd98b0726f/ALZ-20-6305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验