Suppr超能文献

基于CE-GCN的中老年人群多重疾病网络演变预测

Prediction of Multimorbidity Network Evolution in Middle-Aged and Elderly Population Based on CE-GCN.

作者信息

Che Yushi, Wang Yiqiao

机构信息

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.

School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China.

出版信息

Interdiscip Sci. 2025 Jun;17(2):424-436. doi: 10.1007/s12539-024-00685-0. Epub 2025 Feb 10.

Abstract

PURPOSE

With the evolving disease spectrum, chronic diseases have emerged as a primary burden and a leading cause of mortality. Due to the aging population and the nature of chronic illnesses, patients often suffer from multimorbidity. Predicting the likelihood of these patients developing specific diseases in the future based on their current health status and age factors is a crucial task in multimorbidity research.

METHODS

We propose an algorithm, CE-GCN, which integrates age sequence and embeds Graph Convolutional Network (GCN) into Gated Recurrent Unit (GRU), utilizing the topological feature of network common neighbors to predict links in dynamic complex networks. First, we constructed a disease evolution network spanning from ages 45 to 90 years old using disease information from 3333 patients. Then, we introduced an innovative approach for link prediction aimed at uncovering relationships between various diseases. This method takes into account patients' age to construct the evolutionary structure of the disease network, thereby predicting the connections between chronic diseases.

RESULTS

Results from experiments conducted on real networks indicate that our model surpasses others regarding both MRR and MAP. The proposed method accurately reveals associations between diseases and effectively captures future disease risks.

CONCLUSION

Our model can serve as an objective and convenient computer-aided tool to identify hidden relationships between diseases in order to assist healthcare professionals in taking early disease interventions, which can substantially lower the costs associated with treating multimorbidity and enhance the quality of life for patients suffering from chronic conditions.

摘要

目的

随着疾病谱的不断演变,慢性病已成为主要负担和主要死因。由于人口老龄化和慢性病的性质,患者常患有多种疾病。根据这些患者目前的健康状况和年龄因素预测其未来患特定疾病的可能性是多病共存研究中的一项关键任务。

方法

我们提出了一种算法CE-GCN,它整合了年龄序列,并将图卷积网络(GCN)嵌入门控循环单元(GRU),利用网络共同邻居的拓扑特征来预测动态复杂网络中的链接。首先,我们使用3333名患者的疾病信息构建了一个涵盖45至90岁的疾病演变网络。然后,我们引入了一种创新的链接预测方法,旨在揭示各种疾病之间的关系。该方法考虑患者年龄来构建疾病网络的进化结构,从而预测慢性病之间的联系。

结果

在真实网络上进行的实验结果表明,我们的模型在平均倒数排名(MRR)和平均精度均值(MAP)方面均优于其他模型。所提出的方法准确地揭示了疾病之间的关联,并有效地捕捉了未来的疾病风险。

结论

我们的模型可以作为一种客观便捷的计算机辅助工具,用于识别疾病之间的隐藏关系,以协助医疗保健专业人员进行早期疾病干预,这可以大幅降低治疗多病共存的成本,并提高慢性病患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69e3/12106578/e6fc3f32f70b/12539_2024_685_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验