Suppr超能文献

一种富含精氨酸的核定位信号(ArgiNLS)策略,用于简化单细胞的图像分割。

An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single cells.

机构信息

Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195.

Department of Biological Structure, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2320250121. doi: 10.1073/pnas.2320250121. Epub 2024 Jul 29.

Abstract

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called "Arginine-rich NLS" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.

摘要

高通量容积荧光显微镜技术能够在单细胞的基础水平上对全脑结构和功能进行空间整合。然而,用于区分单细胞的传统荧光蛋白 (FP) 修饰体的效果有限,或者对细胞健康有害。在这里,我们引入了一种称为“精氨酸丰富核定位信号(Arginine-rich NLS,ArgiNLS)”的合成且非破坏性的核定位信号 (NLS) 标记策略,该策略通过多精氨酸机制将 FP 定位限制在细胞核内,从而优化了单细胞的遗传标记和下游图像分割。单个 N 端 ArgiNLS 标签通过多精氨酸机制一致地提供了光谱分离的 FP 变体的模块化核限制。ArgiNLS 在体内的性能显示出跨主要皮质细胞类别的功能保守性,并且对局部和全身 AAV 给药都有反应。至关重要的是,ArgiNLS 提供的高信噪比由于快速分类器训练和在 2D 脑切片或 3D 容积全脑图像数据集内标记细胞检测的富集而增强了单细胞的机器学习自动化分割,这些数据集来自染色增强和天然信号。这种遗传策略为大规模精确分割遗传标记的单细胞提供了一个简单灵活的基础,并与行为程序相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da9e/11317604/a96d76f1a36e/pnas.2320250121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验