Suppr超能文献

友好清晰映射图:用于小鼠大脑图谱绘制和分析的优化工具包。

FriendlyClearMap: an optimized toolkit for mouse brain mapping and analysis.

机构信息

Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands.

Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands.

出版信息

Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad035. Epub 2023 May 23.

Abstract

BACKGROUND

Tissue clearing is currently revolutionizing neuroanatomy by enabling organ-level imaging with cellular resolution. However, currently available tools for data analysis require a significant time investment for training and adaptation to each laboratory's use case, which limits productivity. Here, we present FriendlyClearMap, an integrated toolset that makes ClearMap1 and ClearMap2's CellMap pipeline easier to use, extends its functions, and provides Docker Images from which it can be run with minimal time investment. We also provide detailed tutorials for each step of the pipeline.

FINDINGS

For more precise alignment, we add a landmark-based atlas registration to ClearMap's functions as well as include young mouse reference atlases for developmental studies. We provide an alternative cell segmentation method besides ClearMap's threshold-based approach: Ilastik's Pixel Classification, importing segmentations from commercial image analysis packages and even manual annotations. Finally, we integrate BrainRender, a recently released visualization tool for advanced 3-dimensional visualization of the annotated cells.

CONCLUSIONS

As a proof of principle, we use FriendlyClearMap to quantify the distribution of the 3 main GABAergic interneuron subclasses (parvalbumin+ [PV+], somatostatin+, and vasoactive intestinal peptide+) in the mouse forebrain and midbrain. For PV+ neurons, we provide an additional dataset with adolescent vs. adult PV+ neuron density, showcasing the use for developmental studies. When combined with the analysis pipeline outlined above, our toolkit improves on the state-of-the-art packages by extending their function and making them easier to deploy at scale.

摘要

背景

组织透明化技术正在通过实现器官级别的细胞分辨率成像,彻底改变神经解剖学。然而,目前用于数据分析的工具需要大量的时间投入来进行培训,并适应每个实验室的用例,这限制了生产力。在这里,我们提出了 FriendlyClearMap,这是一个集成的工具集,使 ClearMap1 和 ClearMap2 的 CellMap 管道更易于使用,扩展了其功能,并提供了可以最小时间投入运行的 Docker 映像。我们还为管道的每个步骤提供了详细的教程。

发现

为了更精确的对齐,我们在 ClearMap 的功能中添加了基于地标(landmark-based)的图谱注册,还为发育研究提供了幼年小鼠参考图谱。我们提供了一种替代的细胞分割方法,除了 ClearMap 的基于阈值的方法外:Ilastik 的像素分类(Pixel Classification),可以从商业图像分析软件包甚至手动注释中导入分割。最后,我们集成了 BrainRender,这是一种最近发布的用于高级 3D 注释细胞可视化的工具。

结论

作为一个原理验证,我们使用 FriendlyClearMap 来定量分析小鼠前脑和中脑的 3 种主要 GABA 能中间神经元亚型(parvalbumin+ [PV+]、somatostatin+ 和 vasoactive intestinal peptide+)的分布。对于 PV+神经元,我们提供了一个额外的数据集,其中包含青少年和成年 PV+神经元密度,展示了用于发育研究的用途。当与上述分析管道结合使用时,我们的工具包通过扩展其功能并使其更易于大规模部署,改进了现有最先进的工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34a1/10205001/c94812d265bd/giad035fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验