Suppr超能文献

集合子疫情框架及其他时间序列模型短期预测性能的回顾性评估:2022年7月14日至2023年2月26日多地理尺度下的2022-2023年猴痘疫情

Retrospective evaluation of short-term forecast performance of ensemble sub-epidemic frameworks and other time-series models: The 2022-2023 mpox outbreak across multiple geographical scales, July 14, 2022, through February 26th, 2023.

作者信息

Bleichrodt Amanda, Luo Ruiyan, Kirpich Alexander, Chowell Gerardo

机构信息

Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA.

出版信息

medRxiv. 2023 Oct 17:2023.05.15.23289989. doi: 10.1101/2023.05.15.23289989.

Abstract

In May 2022, public health officials noted an unprecedented surge in mpox cases in non-endemic countries worldwide. As the epidemic accelerated, multi-model forecasts of the epidemic's trajectory were critical in guiding the implementation of public health interventions and determining policy. As the case levels have significantly decreased as of early September 2022, evaluating model performance is essential to advance the growing field of epidemic forecasting. Using laboratory-confirmed mpox case data from the Centers for Disease Control and Prevention (CDC) and Our World in Data (OWID) teams through the week of January 26th, 2023, we generated retrospective sequential weekly forecasts (e.g., 1-4-weeks) for Brazil, Canada, France, Germany, Spain, the United Kingdom, the USA, and at the global scale using models that require minimal input data including the auto-regressive integrated moving average (ARIMA), general additive model (GAM), simple linear regression (SLR), Facebook's Prophet model, as well as the sub-epidemic wave (spatial-wave) and -sub-epidemic modeling frameworks. We assess forecast performance using average mean squared error (MSE), mean absolute error (MAE), weighted interval score (WIS), 95% prediction interval coverage (95% PI coverage), and skill scores. Average Winkler scores were used to calculate skill scores for 95% PI coverage. Overall, the -sub-epidemic modeling framework outcompeted other models across most locations and forecasting horizons, with the unweighted ensemble model performing best across all forecasting horizons for most locations regarding average MSE, MAE, WIS, and 95% PI coverage. However, many locations had multiple models performing equally well for the average 95% PI coverage. The -sub-epidemic and spatial-wave frameworks improved considerably in average MSE, MAE, and WIS, and Winkler scores (95% PI coverage) relative to the ARIMA model. Findings lend further support to sub-epidemic frameworks for short-term forecasting epidemics of emerging and re-emerging infectious diseases.

摘要

2022年5月,公共卫生官员指出,全球非流行国家的猴痘病例出现了前所未有的激增。随着疫情加速,对疫情轨迹的多模型预测对于指导公共卫生干预措施的实施和制定政策至关重要。截至2022年9月初,病例数量已显著下降,评估模型性能对于推动不断发展的疫情预测领域至关重要。利用疾病控制和预防中心(CDC)以及“我们的数据世界”(OWID)团队提供的截至2023年1月26日当周的实验室确诊猴痘病例数据,我们使用需要最少输入数据的模型,包括自回归积分移动平均(ARIMA)、广义相加模型(GAM)、简单线性回归(SLR)、Facebook的Prophet模型,以及子疫情波(空间波)和子疫情建模框架,对巴西、加拿大、法国、德国、西班牙、英国、美国以及全球范围生成了回顾性连续每周预测(例如,1 - 4周)。我们使用平均均方误差(MSE)、平均绝对误差(MAE)、加权区间得分(WIS)、95%预测区间覆盖率(95% PI覆盖率)和技能得分来评估预测性能。平均温克勒得分用于计算95% PI覆盖率的技能得分。总体而言,子疫情建模框架在大多数地点和预测范围内优于其他模型,对于大多数地点,在平均MSE、MAE、WIS和95% PI覆盖率方面,未加权集成模型在所有预测范围内表现最佳。然而,许多地点有多个模型在平均95% PI覆盖率方面表现相当。相对于ARIMA模型,子疫情和空间波框架在平均MSE、MAE和WIS以及温克勒得分(95% PI覆盖率)方面有显著改善。研究结果进一步支持了用于新兴和再新兴传染病短期疫情预测的子疫情框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f30/10615009/df2bde72fc2e/nihpp-2023.05.15.23289989v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验