Suppr超能文献

使用随机森林和SHAP算法分析环境参数与心血管疾病之间的相互作用

Analyzing the Interactions between Environmental Parameters and Cardiovascular Diseases Using Random Forest and SHAP Algorithms.

作者信息

Castronuovo Gianfranco, Favia Gianfranco, Telesca Vito, Vammacigno Andrea

机构信息

School of Engineering, University of Basilicata, 85100 Potenza, Italy.

School of Medicine: Interdisciplinary of Medicine, University of Bari, 70124 Bari, Italy.

出版信息

Rev Cardiovasc Med. 2023 Nov 24;24(11):330. doi: 10.31083/j.rcm2411330. eCollection 2023 Nov.

Abstract

BACKGROUND

Cardiovascular diseases (CVD) remain the predominant global cause of mortality, with both low and high temperatures increasing CVD-related mortalities. Climate change impacts human health directly through temperature fluctuations and indirectly via factors like disease vectors. Elevated and reduced temperatures have been linked to increases in CVD-related hospitalizations and mortality, with various studies worldwide confirming the significant health implications of temperature variations and air pollution on cardiovascular outcomes.

METHODS

A database of daily Emergency Room admissions at the Giovanni XIII Polyclinic in Bari (Southern Italy) was developed, spanning from 2013 to 2019, including weather and air quality data. A Random Forest (RF) supervised machine learning model was used to simulate the trend of hospital admissions for CVD. The Seasonal and Trend decomposition using Loess (STL) decomposition model separated the trend component, while cross-validation techniques were employed to prevent overfitting. Model performance was assessed using specific metrics and error analysis. Additionally, the SHapley Additive exPlanations (SHAP) method, a feature importance technique within the eXplainable Artificial Intelligence (XAI) framework, was used to identify the feature importance.

RESULTS

An of 0.97 and a Mean Absolute Error of 0.36 admissions were achieved by the model. Atmospheric pressure, minimum temperature, and carbon monoxide were found to collectively contribute about 74% to the model's predictive power, with atmospheric pressure being the dominant factor at 37%.

CONCLUSIONS

This research underscores the significant influence of weather-climate variables on cardiovascular diseases. The identified key climate factors provide a practical framework for policymakers and healthcare professionals to mitigate the adverse effects of climate change on CVD and devise preventive strategies.

摘要

背景

心血管疾病(CVD)仍然是全球主要的死亡原因,低温和高温都会增加与心血管疾病相关的死亡率。气候变化通过温度波动直接影响人类健康,并通过疾病媒介等因素间接影响。气温升高和降低都与心血管疾病相关住院率和死亡率的增加有关,全球各地的各种研究证实了温度变化和空气污染对心血管疾病结局的重大健康影响。

方法

建立了意大利南部巴里市乔瓦尼十三世综合诊所2013年至2019年每日急诊入院数据库,包括天气和空气质量数据。使用随机森林(RF)监督机器学习模型来模拟心血管疾病住院趋势。采用局部加权回归散点平滑(STL)分解模型分离趋势成分,同时采用交叉验证技术防止过拟合。使用特定指标和误差分析评估模型性能。此外,还使用了可解释人工智能(XAI)框架内的一种特征重要性技术——SHapley加法解释(SHAP)方法来确定特征重要性。

结果

该模型的决定系数为0.97,平均绝对误差为0.36次入院。发现大气压力、最低温度和一氧化碳共同对模型的预测能力贡献约74%,其中大气压力是主导因素,占37%。

结论

本研究强调了天气-气候变量对心血管疾病的重大影响。确定的关键气候因素为政策制定者和医疗保健专业人员减轻气候变化对心血管疾病的不利影响并制定预防策略提供了一个实用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a092/11262455/64cd97314110/2153-8174-24-11-330-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验