Suppr超能文献

高维函数型数据的快速协方差估计

Fast Covariance Estimation for High-dimensional Functional Data.

作者信息

Xiao Luo, Zipunnikov Vadim, Ruppert David, Crainiceanu Ciprian

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, MD.

Department of Statistical Science and School of Operations Research and Information Engineering, Cornell University, Ithaca, NY.

出版信息

Stat Comput. 2016 Jan 1;26(1):409-421. doi: 10.1007/s11222-014-9485-x. Epub 2014 Jun 27.

Abstract

We propose two fast covariance smoothing methods and associated software that scale up linearly with the number of observations per function. Most available methods and software cannot smooth covariance matrices of dimension > 500; a recently introduced sandwich smoother is an exception but is not adapted to smooth covariance matrices of large dimensions, such as = 10, 000. We introduce two new methods that circumvent those problems: 1) a fast implementation of the sandwich smoother for covariance smoothing; and 2) a two-step procedure that first obtains the singular value decomposition of the data matrix and then smoothes the eigenvectors. These new approaches are at least an order of magnitude faster in high dimensions and drastically reduce computer memory requirements. The new approaches provide instantaneous (a few seconds) smoothing for matrices of dimension = 10,000 and very fast (< 10 minutes) smoothing for = 100, 000. R functions, simulations, and data analysis provide ready to use, reproducible, and scalable tools for practical data analysis of noisy high-dimensional functional data.

摘要

我们提出了两种快速协方差平滑方法及相关软件,它们随每个函数观测值数量呈线性扩展。大多数现有方法和软件无法平滑维度大于500的协方差矩阵;最近引入的三明治平滑器是个例外,但它不适合平滑大维度的协方差矩阵,比如维度为10000的矩阵。我们介绍了两种新方法来规避这些问题:1)用于协方差平滑的三明治平滑器的快速实现;2)一种两步法,先获取数据矩阵的奇异值分解,然后平滑特征向量。这些新方法在高维度下至少快一个数量级,并大幅降低计算机内存需求。新方法可为维度为10000的矩阵提供即时(几秒)平滑,为维度为100000的矩阵提供非常快速(<10分钟)的平滑。R函数、模拟和数据分析为有噪声的高维函数数据的实际数据分析提供了随时可用、可重现且可扩展的工具。

相似文献

1
Fast Covariance Estimation for High-dimensional Functional Data.高维函数型数据的快速协方差估计
Stat Comput. 2016 Jan 1;26(1):409-421. doi: 10.1007/s11222-014-9485-x. Epub 2014 Jun 27.
2
Fast covariance estimation for sparse functional data.稀疏函数型数据的快速协方差估计
Stat Comput. 2018;28(3):511-522. doi: 10.1007/s11222-017-9744-8. Epub 2017 Apr 11.
6
Fast global image smoothing based on weighted least squares.基于加权最小二乘法的快速全局图像平滑。
IEEE Trans Image Process. 2014 Dec;23(12):5638-53. doi: 10.1109/TIP.2014.2366600.
7
Testing for cubic smoothing splines under dependent data.相依数据下三次平滑样条的检验
Biometrics. 2011 Sep;67(3):871-5. doi: 10.1111/j.1541-0420.2010.01537.x. Epub 2011 Jan 6.

引用本文的文献

5
Functional quantile principal component analysis.功能分位数主成分分析
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae040.
8
Functional support vector machine.功能支持向量机。
Biostatistics. 2024 Oct 1;25(4):1178-1194. doi: 10.1093/biostatistics/kxae007.
10
Fast Multilevel Functional Principal Component Analysis.快速多级功能主成分分析
J Comput Graph Stat. 2023;32(2):366-377. doi: 10.1080/10618600.2022.2115500. Epub 2022 Oct 7.

本文引用的文献

3
Structured functional principal component analysis.结构化功能主成分分析
Biometrics. 2015 Mar;71(1):247-257. doi: 10.1111/biom.12236. Epub 2014 Oct 18.
5
Penalized Functional Regression.惩罚性函数回归
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
7
Longitudinal functional principal component analysis.纵向功能主成分分析
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
8
Generalized Multilevel Functional Regression.广义多级功能回归
J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561. doi: 10.1198/jasa.2009.tm08564.
9
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.多级功能主成分分析
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验