Miranda Michelle F, Zhu Hongtu, Ibrahim Joseph G
University of Texas MD Anderson Cancer Center.
Universidade de São Paulo.
Ann Appl Stat. 2018 Sep;12(3):1422-1450. doi: 10.1214/17-AOAS1116. Epub 2018 Sep 11.
Medical imaging studies have collected high dimensional imaging data to identify imaging biomarkers for diagnosis, screening, and prognosis, among many others. These imaging data are often represented in the form of a multi-dimensional array, called a tensor. The aim of this paper is to develop a tensor partition regression modeling (TPRM) framework to establish a relationship between low-dimensional clinical outcomes (e.g., diagnosis) and high dimensional tensor covariates. Our TPRM is a hierarchical model and efficiently integrates four components: (i) a partition model, (ii) a canonical polyadic decomposition model, (iii) a principal components model, and (iv) a generalized linear model with a sparse inducing normal mixture prior. This framework not only reduces ultra-high dimensionality to a manageable level, resulting in efficient estimation, but also optimizes prediction accuracy in the search for informative subtensors. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulation shows that TPRM outperforms several other competing methods. We apply TPRM to predict disease status (Alzheimer versus control) by using structural magnetic resonance imaging data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
医学成像研究收集了高维成像数据,以识别用于诊断、筛查和预后等诸多方面的成像生物标志物。这些成像数据通常以多维数组的形式呈现,称为张量。本文的目的是开发一种张量划分回归建模(TPRM)框架,以建立低维临床结果(如诊断)与高维张量协变量之间的关系。我们的TPRM是一种层次模型,有效地整合了四个组件:(i)一个划分模型,(ii)一个典范多向分解模型,(iii)一个主成分模型,以及(iv)一个具有稀疏诱导正态混合先验的广义线性模型。该框架不仅将超高维度降低到可管理的水平,从而实现高效估计,而且在寻找信息子张量时优化了预测准确性。后验计算通过一种高效的马尔可夫链蒙特卡罗算法进行。模拟表明,TPRM优于其他几种竞争方法。我们应用TPRM通过使用从阿尔茨海默病神经成像计划(ADNI)研究中获得的结构磁共振成像数据来预测疾病状态(阿尔茨海默病与对照)。