Suppr超能文献

一种将氢营养型产甲烷菌生物强化与生物炭生物刺激相结合的新策略,用于同时进行多环芳烃生物降解和生物能源回收。

A novel strategy combining hydrogenotrophic methanogens' bioaugmentation and biochar biostimulation for simultaneous polycyclic aromatic hydrocarbon biodegradation and bioenergy recovery.

作者信息

Tang Rui, Zhang Min, Li Xin

机构信息

College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) No. 17 Qinghua Donglu, Haidian District Beijing 100083 People's Republic of China

出版信息

RSC Adv. 2024 Jul 29;14(33):23710-23719. doi: 10.1039/d4ra03732d. eCollection 2024 Jul 26.

Abstract

A novel strategy combining bioaugmentation using methanogenic archaea and biostimulation using biochar was proposed for the first time to obtain simultaneous improvement of mixed PAHs' anaerobic biodegradation and bioenergy production. The results showed that the addition of PHAs immediately resulted in inhibition in methane production and accumulation of VFA, indicating that PHAs are more toxic to methanogens than the acetogenic bacteria. The coupling of biochar with hydrogenotrophic methanogen alleviated the inhibitory effects of PAHs, allowing the anaerobic fermentation system to recover its methane production capability rapidly. Compared to the Fe + bioaugmentation group, the biochar + bioaugmentation group exhibited a 7.5% higher restored cumulative methane production. This coupling strategy ultimately facilitated the degradation of most PAHs, achieving a removal rate of over 90%. Moreover, the coupled biochar and bioaugmentation induced significant changes in the archaeal community structure. Direct interspecies electron guilds (, and ) were enriched in the presence of biochar and bioaugmentation, responsible for prominent PAH removal and methane recovery. This study demonstrated the feasibility of simultaneous PAH biodegradation and bioenergy production using electron acceptor and enriched microorganisms.

摘要

首次提出了一种将利用产甲烷古菌进行生物强化与利用生物炭进行生物刺激相结合的新策略,以同时提高混合多环芳烃的厌氧生物降解和生物能源产量。结果表明,添加聚羟基脂肪酸酯(PHA)立即导致甲烷产生受到抑制和挥发性脂肪酸(VFA)积累,这表明PHA对产甲烷菌的毒性比对产乙酸细菌的毒性更大。生物炭与嗜氢产甲烷菌的耦合减轻了多环芳烃的抑制作用,使厌氧发酵系统迅速恢复其甲烷产生能力。与铁 + 生物强化组相比,生物炭 + 生物强化组的恢复累积甲烷产量高出7.5%。这种耦合策略最终促进了大多数多环芳烃的降解,去除率达到90%以上。此外,生物炭和生物强化的耦合导致古菌群落结构发生显著变化。直接种间电子群落(、和)在生物炭和生物强化存在的情况下富集,负责显著的多环芳烃去除和甲烷恢复。本研究证明了利用电子受体和富集微生物同时进行多环芳烃生物降解和生物能源生产的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验