Suppr超能文献

一种使用K-Means++、共生纹理描述符(SGLDM)、ResNet50和合成数据增强技术进行脑肿瘤检测的新方法。

A novel approach to brain tumor detection using K-Means++, SGLDM, ResNet50, and synthetic data augmentation.

作者信息

Sarah Ponuku, Krishnapriya Srigiri, Saladi Saritha, Karuna Yepuganti, Bavirisetti Durga Prasad

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.

School of Electronics Engineering, VIT-AP University, Amaravati, India.

出版信息

Front Physiol. 2024 Jul 15;15:1342572. doi: 10.3389/fphys.2024.1342572. eCollection 2024.

Abstract

Brain tumors are abnormal cell growths in the brain, posing significant treatment challenges. Accurate early detection using non-invasive methods is crucial for effective treatment. This research focuses on improving the early detection of brain tumors in MRI images through advanced deep-learning techniques. The primary goal is to identify the most effective deep-learning model for classifying brain tumors from MRI data, enhancing diagnostic accuracy and reliability. The proposed method for brain tumor classification integrates segmentation using K-means++, feature extraction from the Spatial Gray Level Dependence Matrix (SGLDM), and classification with ResNet50, along with synthetic data augmentation to enhance model robustness. Segmentation isolates tumor regions, while SGLDM captures critical texture information. The ResNet50 model then classifies the tumors accurately. To further improve the interpretability of the classification results, Grad-CAM is employed, providing visual explanations by highlighting influential regions in the MRI images. In terms of accuracy, sensitivity, and specificity, the evaluation on the Br35H::BrainTumorDetection2020 dataset showed superior performance of the suggested method compared to existing state-of-the-art approaches. This indicates its effectiveness in achieving higher precision in identifying and classifying brain tumors from MRI data, showcasing advancements in diagnostic reliability and efficacy. The superior performance of the suggested method indicates its robustness in accurately classifying brain tumors from MRI images, achieving higher accuracy, sensitivity, and specificity compared to existing methods. The method's enhanced sensitivity ensures a greater detection rate of true positive cases, while its improved specificity reduces false positives, thereby optimizing clinical decision-making and patient care in neuro-oncology.

摘要

脑肿瘤是大脑中异常的细胞生长,带来了重大的治疗挑战。使用非侵入性方法进行准确的早期检测对于有效治疗至关重要。本研究专注于通过先进的深度学习技术改进MRI图像中脑肿瘤的早期检测。主要目标是从MRI数据中识别出用于对脑肿瘤进行分类的最有效深度学习模型,提高诊断的准确性和可靠性。所提出的脑肿瘤分类方法整合了使用K-means++的分割、从空间灰度共生矩阵(SGLDM)进行特征提取以及使用ResNet50进行分类,并结合合成数据增强来提高模型的鲁棒性。分割将肿瘤区域分离出来,而SGLDM捕捉关键的纹理信息。然后ResNet50模型对肿瘤进行准确分类。为了进一步提高分类结果的可解释性,采用了Grad-CAM,通过突出显示MRI图像中的影响区域来提供可视化解释。在准确性、敏感性和特异性方面,在Br35H::BrainTumorDetection2020数据集上的评估表明,与现有的最先进方法相比,所建议的方法具有卓越的性能。这表明其在从MRI数据中识别和分类脑肿瘤方面实现更高精度的有效性,展示了诊断可靠性和疗效方面的进步。所建议方法的卓越性能表明其在从MRI图像中准确分类脑肿瘤方面的鲁棒性,与现有方法相比实现了更高的准确性、敏感性和特异性。该方法提高的敏感性确保了更高的真阳性病例检测率,而其提高的特异性减少了假阳性,从而优化了神经肿瘤学中的临床决策和患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd00/11284281/7b0860de54fd/fphys-15-1342572-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验