Information Systems Engineering, Kocaeli University, Kocaeli, 41001, Türkiye.
Computer Engineering, Engineering Faculty, Gazi University, Ankara, 06570, Türkiye.
BMC Med Inform Decis Mak. 2024 Oct 4;24(1):285. doi: 10.1186/s12911-024-02699-6.
Significant progress has been made recently with the contribution of technological advances in studies on brain cancer. Regarding this, identifying and correctly classifying tumors is a crucial task in the field of medical imaging. The disease-related tumor classification problem, on which deep learning technologies have also become a focus, is very important in the diagnosis and treatment of the disease. The use of deep learning models has shown promising results in recent years. However, the sparsity of ground truth data in medical imaging or inconsistent data sources poses a significant challenge for training these models. The utilization of StyleGANv2-ADA is proposed in this paper for augmenting brain MRI slices to enhance the performance of deep learning models. Specifically, augmentation is applied solely to the training data to prevent any potential leakage. The StyleGanv2-ADA model is trained with the Gazi Brains 2020, BRaTS 2021, and Br35h datasets using the researchers' default settings. The effectiveness of the proposed method is demonstrated on datasets for brain tumor classification, resulting in a notable improvement in the overall accuracy of the model for brain tumor classification on all the Gazi Brains 2020, BraTS 2021, and Br35h datasets. Importantly, the utilization of StyleGANv2-ADA on the Gazi Brains 2020 Dataset represents a novel experiment in the literature. The results show that the augmentation with StyleGAN can help overcome the challenges of working with medical data and the sparsity of ground truth data. Data augmentation employing the StyleGANv2-ADA GAN model yielded the highest overall accuracy for brain tumor classification on the BraTS 2021 and Gazi Brains 2020 datasets, together with the BR35H dataset, achieving 75.18%, 99.36%, and 98.99% on the EfficientNetV2S models, respectively. This study emphasizes the potency of GANs for augmenting medical imaging datasets, particularly in brain tumor classification, showcasing a notable increase in overall accuracy through the integration of synthetic GAN data on the used datasets.
最近,随着技术在脑癌研究中的进步,取得了重大进展。在这方面,识别和正确分类肿瘤是医学成像领域的一项关键任务。深度学习技术也成为焦点的疾病相关肿瘤分类问题在疾病的诊断和治疗中非常重要。近年来,深度学习模型的应用已经取得了有希望的结果。然而,医学成像中的真实数据稀疏或不一致的数据来源对这些模型的训练构成了重大挑战。本文提出利用 StyleGANv2-ADA 来增强脑 MRI 切片,以提高深度学习模型的性能。具体来说,仅在训练数据上应用增强以防止任何潜在的泄漏。使用研究人员的默认设置,使用 Gazi Brains 2020、BRaTS 2021 和 Br35h 数据集训练 StyleGanv2-ADA 模型。该方法在脑肿瘤分类数据集上的有效性得到了验证,导致所有 Gazi Brains 2020、BraTS 2021 和 Br35h 数据集的脑肿瘤分类模型的整体准确性都有显著提高。重要的是,在 Gazi Brains 2020 数据集上使用 StyleGANv2-ADA 是文献中的一项新实验。结果表明,使用 StyleGAN 进行增强可以帮助克服处理医学数据和真实数据稀疏的挑战。使用 StyleGANv2-ADA GAN 模型进行数据增强,在 BraTS 2021 和 Gazi Brains 2020 数据集以及 BR35H 数据集上的脑肿瘤分类中获得了最高的整体准确性,分别在 EfficientNetV2S 模型上达到 75.18%、99.36%和 98.99%。这项研究强调了 GAN 用于增强医学成像数据集的潜力,特别是在脑肿瘤分类方面,通过在使用的数据集上集成合成 GAN 数据,整体准确性显著提高。