Suppr超能文献

影响糖尿病视网膜病变深度学习系统性能的技术和成像因素。

Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy.

作者信息

Yip Michelle Y T, Lim Gilbert, Lim Zhan Wei, Nguyen Quang D, Chong Crystal C Y, Yu Marco, Bellemo Valentina, Xie Yuchen, Lee Xin Qi, Hamzah Haslina, Ho Jinyi, Tan Tien-En, Sabanayagam Charumathi, Grzybowski Andrzej, Tan Gavin S W, Hsu Wynne, Lee Mong Li, Wong Tien Yin, Ting Daniel S W

机构信息

1Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.

2Duke-NUS Medical School, Singapore, Singapore.

出版信息

NPJ Digit Med. 2020 Mar 23;3:40. doi: 10.1038/s41746-020-0247-1. eCollection 2020.

Abstract

Deep learning (DL) has been shown to be effective in developing diabetic retinopathy (DR) algorithms, possibly tackling financial and manpower challenges hindering implementation of DR screening. However, our systematic review of the literature reveals few studies studied the impact of different factors on these DL algorithms, that are important for clinical deployment in real-world settings. Using 455,491 retinal images, we evaluated two technical and three image-related factors in detection of referable DR. For technical factors, the performances of four DL models (VGGNet, ResNet, DenseNet, Ensemble) and two computational frameworks (Caffe, TensorFlow) were evaluated while for image-related factors, we evaluated image compression levels (reducing image size, 350, 300, 250, 200, 150 KB), number of fields (7-field, 2-field, 1-field) and media clarity (pseudophakic vs phakic). In detection of referable DR, four DL models showed comparable diagnostic performance (AUC 0.936-0.944). To develop the VGGNet model, two computational frameworks had similar AUC (0.936). The DL performance dropped when image size decreased below 250 KB (AUC 0.936, 0.900,  < 0.001). The DL performance performed better when there were increased number of fields (dataset 1: 2-field vs 1-field-AUC 0.936 vs 0.908,  < 0.001; dataset 2: 7-field vs 2-field vs 1-field, AUC 0.949 vs 0.911 vs 0.895). DL performed better in the pseudophakic than phakic eyes (AUC 0.918 vs 0.833,  < 0.001). Various image-related factors play more significant roles than technical factors in determining the diagnostic performance, suggesting the importance of having robust training and testing datasets for DL training and deployment in the real-world settings.

摘要

深度学习(DL)已被证明在开发糖尿病视网膜病变(DR)算法方面是有效的,可能有助于应对阻碍DR筛查实施的资金和人力挑战。然而,我们对文献的系统综述发现,很少有研究探讨不同因素对这些DL算法的影响,而这些因素对于在现实环境中的临床应用至关重要。我们使用455,491张视网膜图像,评估了在可转诊DR检测中的两个技术因素和三个与图像相关的因素。对于技术因素,评估了四种DL模型(VGGNet、ResNet、DenseNet、集成模型)和两种计算框架(Caffe、TensorFlow)的性能;对于与图像相关的因素,我们评估了图像压缩级别(减小图像大小,350、300、250、200、150 KB)、视野数量(7视野、2视野、1视野)和介质清晰度(人工晶状体眼与晶状体眼)。在可转诊DR的检测中,四种DL模型显示出可比的诊断性能(AUC 0.936 - 0.944)。为了开发VGGNet模型,两种计算框架具有相似的AUC(0.936)。当图像大小降至250 KB以下时,DL性能下降(AUC 0.936、0.900,<0.001)。当视野数量增加时,DL性能表现更好(数据集1:2视野与1视野 - AUC 0.936对0.908,<0.001;数据集2:7视野与2视野与1视野,AUC 0.949对0.911对0.895)。DL在人工晶状体眼中的表现优于晶状体眼(AUC 0.918对0.833,<0.001)。在确定诊断性能方面,各种与图像相关的因素比技术因素发挥着更重要的作用,这表明在现实环境中进行DL训练和部署时,拥有强大的训练和测试数据集非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验